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Abstract

Many wound management protocols have been developed to improve wound healing after
burn with the primordial aim to restore the barrier function of the skin and also provide a
better aesthetic outcome. Autologous skin grafts remain the gold standard in the treatment of
skin burn but this treatment has its limitation especially for patients presenting limited donor
sites due to extensive burn areas. Deep burn injuries also alter the integrity of skin sensitive
innervation and have an impact on patient’s quality of life by compromising perceptions of
touch, temperature and pain. Thus, patients can suffer from long-term disabilities ranging
from cutaneous sensibility loss to chronic pain. The cellular mechanisms involved in skin
reinnervation following injury are not elucidated yet. Depending on the depth of the burn,
nerve sprouting can occur from the wound bed or the surrounding healthy tissue but somehow
this process fails to provide correct reinnervation of the wound during scarring. In addition,
several clinical observations indicate that damage to the peripheral nervous system influences
wound healing, resulting in delayed wound healing or chronic wounds, underlining the role of
innervation and neuromediators for normal cutaneous tissue repair development. Promising
tissue engineering strategies including the use of biomaterials, skin substitutes and stem cells
could provide novel alternative treatments in wound healing and help improving patient’s

SENSOry recovery.

Keywords: burn injury, cutaneous wound healing, skin engineering, nerve fiber regrowth

Running title: Burn wound healing and sensory recovery
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1. Introduction

A burn injury may be induced by thermal agents but also by radiations, radioactivity,
chemicals or friction. The most common causes of burns are fire for adults and scald for
children (1,2). In France, burns requiring medical attention affect approximately 500,000
people per year. Ten thousands need hospitalization and among those patients, 10% die (3). In
Europe, the rate of death in hospitalized patients ranges from 1.4 to 18% across countries (4).
In 2004, the World Health Organization revealed that fire burn affects 11 million people and
account for more than 300,000 deaths per year (5). However, it unequally affects populations,
since low- and middle-income countries have the highest mortality rates.

Whatever the cause of the burn, the severity of an injury mainly depends on its depth and
extent. Besides, the assessment of these two features is crucial to providing a proper treatment
without delay, especially for extensive burns (6). Then, when an injury extended over more
than 10-15% of the total body surface area (TBSA), admission to critical care units is
required. In that case, the first hours following the injury are dedicated to the prompt fluid
resuscitation to prevent the hypovolemic shock which occurs secondary to a persistent cedema
and outflow of osmotically active molecules such as proteins (7). After these potential vital
treatments, burn wound management is performed using occlusive dressing or, if necessary,
wound excision and skin grafting.

The post-burn mortality rate which is highly correlated to the age, the TBSA and the
inhalation injury, has been decreasing over the past decades (4,8,9). This is likely due to the
improvement of resuscitation procedures, treatment of infection and the wound healing
management. Currently, the challenge is to improve the patients’ rehabilitation and, hence,
their quality of life. Indeed, in addition to any post-traumatic stress disorder, burned patients

may suffer from their scars. At best, they are unaesthetic because of depigmentation,
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hyperpigmentation or skin thickening (hypertrophic scar). For some, scars become very
disabling when scar contractures occur (10). Overall, itching and pain are frequent sequelae
that may disturb daily life (11,12). The occurrence of these symptoms suggests that injured
sensory nerve fibers regenerate improperly or insufficiently. This demonstrates that efforts in
wound healing management should still be made to improve nerve fiber regeneration. In
addition to the improvement of sensory perceptions, it would allow a significant progress in
the wound healing process, since nerve fibers are known to be involved in skin repair and
cutaneous homeostasis (13,14).

In this review, we will first overview the skin repair process and the regeneration of nerve
fibers. After describing the current deep wound management and the possible post-burn
sequelae, we will address the question of innovative strategies to improve wound healing and

nerve fiber regeneration.

2. Skin repair process and peripheral innervation

2.1. Overview of wound healing

Wound healing consists in the restauration of the integrity of the damaged tissue. In a similar
manner, the cutaneous healing process relies on complex cellular dialogues and can be
divided into three sequential and intercorrelated phases. The inflammatory and vascular phase
starts as soon as the damage occurs. The skin is richly vascularized and the disruption of
blood vessels in the dermis, and in the hypodermis if the injury is more severe, leads to the
formation of a blot clot and of a provisional matrix mainly composed of fibrin and
fibronectin. Platelets involved in the blood clot have also a major role in the recruitment of

inflammatory cells such as neutrophils, macrophages and mast cells to the wound due the
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local release of cytokines and chemokines. Fibroblasts and endothelial cells are also drawn to
the wound by chemotaxis and will be major actors in the second stage of wound healing, the
proliferation phase. The hallmark of the proliferation phase is the formation of the granulation
tissue in which fibroblasts are stimulated to proliferate and undergo major cellular changes
characterized by the expression of a-smooth muscle actin. They are consequently called
myofibroblasts and display contractile properties that are essential in the maturation of the
granulation tissue overtime (15). They also secrete and deposit extracellular matrix, mainly
collagen type Il that will progressively replace the provisional matrix. Most myofibroblasts
derive from resident fibroblasts but it is important to note that different subpopulations of
fibroblasts presenting their own proper capacities of differentiation are present in the dermis
(16). Other sources of myofibroblasts have been highlighted such as local stromal stem cells,
blood circulating progenitors and bone marrow-derived stem cells (17). To support the strong
cellular activities occurring during the proliferation phase, endothelial cells recruited to the
wounded area also proliferate and contribute to the angiogenesis process. A dense network of
capillaries can then deliver all the necessary nutrients to the healing area (15). The third and
last phase of skin wound healing, the remodeling phase, leads to the progressive formation of
the scar. The scarring process involves two major phenomena: re-epithelialization and final
maturation of the granulation tissue. At the edges of the wound, keratinocytes display a
migratory phenotype. They express specific integrins allowing re-epithelialization and wound
closure (18). Upon wound closure, the maturation of the granulation tissue is marked by the
synthesis of collagen type | and the disappearance of the myofibroblast population by
apoptosis (19). The persistence of myofibroblasts in the granulation tissue is a major cause of
well documented pathological conditions involving hypertrophic scarring and tissue
deformation (20). Both myofibroblast differentiation and apoptosis are driven by specific

signals such as the release of the cytokine transforming growth factor (TGF)-B1 which is the
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major inductor of the myofibroblast differentiation, intercellular and/or matrix interactions
and finally mechanical stress (21,22). It is known that a stiffer environment leading to a lower
rate of myofibrobalst apoptosis is a cause of hypertrophic scar (23). In addition, keratinocytes
and the epithelium certainly play a role in the normal evolution of the granulation tissue and
in myofibroblast apoptosis. Indeed, it has been shown that perturbation of dermal-epidermal
interactions can lead to excessive scarring. Interestingly, in such pathological situations, a

neurogenic inflammation seems to be involved (24).

2.2. Cutaneous innervation and role of sensory receptors in skin perceptions

In the skin, different nerve endings are implicated in the detection and transmission of
sensitive information to the central nervous system.

Nerve fibers express neuromediators. Without stimulation, there is a basal expression of these
neuromediators whereas after chemical injury, physical damage, or inflammation, the quantity
of neuromediators dramatically increases. These mediators have been described to be
involved in different physiological and pathological situations, including wound healing (for
review, see (25)). Autonomic nerve fibers present in the skin play a major role in body
thermoregulation by acting on smooth muscles in arterioles, on erector pili muscles and on
sweat glands (Figure 1). Sensory information are detected by specific receptors present on
sensory nerve fibers (Figure 1). These information are transmitted to the cell body located in
dorsal root ganglia (close to the spinal cord) and finally to the central nervous system for
integration.

Cutaneous nerve fibers can detect stimuli such as thermal and tactile sensation or pain
(26,27). After skin lesion, these nerve fibers and their receptor are damaged or sometimes

destroyed but neuronal cell bodies are still present in the dorsal root ganglia (Figure 2).
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Mechanoreceptor present on AP and Ad fibers can detect mechanical stimuli while
temperature and pain are detected respectively by thermoreceptors and nociceptors present on

Ad and C free nerve endings also called small fibers (for review, see (25)).

2.3. Role of innervation in skin healing and therapeutic options

It has been recently shown that cutaneous innervation play important roles in normal and
pathological repair processes (14,28). However, the precise roles of sensory and autonomic
innervation during wound healing remain to be clearly established. Not only keratinocytes
and melanocytes but also fibroblasts and myofibroblasts express different neurotrophins such
as nerve growth factor (NGF), neurotophin-3 (NT-3), brain-derived neurotrophic factor
(BDNF) and their receptors which promote their proliferation and differentiation (29,30).
Neuropeptides such as calcitonin gene related peptide (CGRP), substance P, and vasoactive
intestinal peptide can modulate the activity of matrix metalloproteinase (MMP)-2 and MMP-9
which are major actors involved in granulation tissue remodeling and scar formation. In
addition, these neuropeptides also act on collagen type | and type Il production during skin
wound healing and promote the adhesion of dermal fibroblasts and their differentiation into
myofibroblasts (31). The effects of these neuropeptides on the extracellular matrix
composition and arrangement are certainly essential as it is well established that the
mechanical microenvironment organized by the extracellular matrix could interfere with
fibroblast to myofibroblast differentiation (14). In addition, the modulation of MMPs acts on
the subsequent MMP activation of latent TGF-1 (32).

Skin damages induce the release by the immune cells and the sensory nerve endings of
inflammatory mediators including interleukin (IL)-1p, tumor necrosis factor-o (TNF-a),
bradykinin, substance P, CGRP, NGF, and prostaglandins, contributing to the “inflammatory

soup” (33). It has been shown that altered substance P levels could be involved in impaired
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cutaneous healing responses observed in diabetes mellitus (34) or during hypertrophic scar
formation (35). It has also been shown in vitro that direct contact of fibroblasts with neurites
is able to induce myofibroblastic differentiation increasing then collagen gel retraction which
is an important process during wound healing (36).

In keloid, the density of nerve fibers is significantly higher than in the normal skin samples
(37) and symptoms such as itch and pain, abnormal thermosensory thresholds to warmth as
well as cold and heat pain are present suggesting that small nerve fibers are involved in the
pathogenesis of this disease (38). In hypertrophic scar, data in the literature are not coherent
with either a decrease (39) or an increase (40) of the number of observed nerve fibers.
Nevertheless, in burn patients with chronic pain, abnormal cutaneous innervation is reported
(41). Recently, in a mouse model of hypertrophic scarring induced by mechanical loading, Li
et al. suggest that both inflammation and the cutaneous nervous system contribute to
hypertrophic scar formation (42).

Animal models of skin denervation have helped investigating a possible role of sensory
innervation in skin wound healing. Skin denervation models have been designed using
surgery, chemicals or genetically engineered murine strains. Thus, studies have shown that
surgical denervation induces delayed wound healing with reduced inflammatory cell
infiltration, altered wound contraction and delayed re-epithelialisation (43,44). Another skin
denervation model using chemical sympathectomy induced by intraperitoneal administration
of 6-hydroxydopamine (6-OHDA) also interferes with wound healing. (6-OHDA)-induced
sympathectomy modifies wound healing with an increase in wound contraction, a reduction
of mast cell migration and a delayed re-epithelialization. These modifications are associated
with a decrease in neurogenic inflammation (45,46). Capsaicin, a potent agonist of TRPV1,
has also been used in order to induce the depletion of neuropeptides (substance P and CGRP)

from Ad and C-fibers. When administered to neonatal rats, capsaicin can provoke total
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sensory denervation while in adults it can be used to promote transient sensory neuropathy.
Studies have shown that capsaicin induces delayed wound healing and further highlight that
neuropeptides released by sensory fibers play a major role in this process (47—-49). Moreover,
Toda et al. have also shown that angiogenesis and wound closure were significantly
suppressed in a CGRP knockout mouse model (48).

Topical application of sensory neuropeptides following cutaneous wounding has also been
investigated. Several studies have highlighted a beneficial therapeutic effect of substance P on
wound closure and angiogenesis (34,50,51). The intraperitoneal or intradermal injection of
CGRP has also been investigated with positive outcomes on wound contraction (52).
Altogether these studies indicate that sensory innervation and neuropeptides such as substance
P and CGRP can modulate the overall cutaneous wound healing process (for review see (28))

and could offer promising therapeutic options.

2.4. Mechanisms of nerve regeneration during cutaneous healing

Following skin damage, the mechanisms involved in nerve regeneration are not fully
elucidated. Nevertheless, during wound healing, the remodeling of regenerating nerve fibers
is observed and nerve fiber density is modified. During healing of a burn injury in guinea
pigs, it has been shown that the number of substance P-containing nerve fibers acutely
decreases after the burn and then gradually increases with a maximum on day 14 post burn.
Following that peak, the fiber density gradually decreases to end up lower than controls (53).
Interactions during wound healing between myofibroblastic differentiation necessary for
granulation tissue formation and innervation certainly play a major role. Indeed,
myofibroblasts possess neurotrophic properties and are able to regulate innervation during
healing. They synthesize and secrete all neurotrophins and express neurotrophin receptors

(30) being certainly involved in the high levels of neurotrophins such as NGF observed in the
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wound site (54). Myofibroblasts also produce extracellular matrix components (55) such as
laminin, which are known to promote neurite outgrowth (56).

Relationships between nerves and myofibroblasts during cutaneous wound healing in the
developing rat have been studied by Liu et al (57). Indeed, it is well known that changes in
wound healing capacities occur with age with a delay in wound healing observed in elderly.
Liu et al (57) show that, in neonatal animals, rapid wound closure is associated with an
important myofibroblast proliferation and a marked increase in innervation density; in
contrast, in adult rats where a delayed wound closure occurs compared with neonatal animals,
the appearance of both myofibroblasts and nerves are reduced compared with younger rats.
The early regeneration of nerves associated with the proliferation of myofibroblasts could at
least in part be responsible for the rapid and efficient healing process observed in neonate
animals. In mature rats, altered nerve-myofibroblast relationships may contribute to reduce
healing.

In the skin, it seems clear that nerve fibers are located close to the vascular tree and
relationships could exist between these structures (58). Interesting studies have been
performed using MRLMplJ mice, which present an accelerated ability to heal ear punch
wounds without scar formation whereas wounds on the dorsal surface of the trunk heal with
scar formation. Indeed, during dorsal skin healing (leading to scar formation), the wounded
area becomes rapidly hyper-vascularized by as early as day 7 post-wounding while at that
time, peripheral nerve regeneration is only found in the outer regions of the wound where
nerve fibers have begun to sprout into the wound area from surrounding healthy tissue. In
contrast, in the ear wound (which heals without scar formation), nerve regeneration precedes
vascularization, recapitulating early mammalian development (59). In addition, denervation of
the ear obliterates the regenerative capacity of the MRL/MpJ mice, and also has a severe

negative effect on the ear wound repair mechanisms of the C57BL / 6 strain (a control strain
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known to have a poorer regenerative capacity) (44). It suggests that innervation may be
important not only for regeneration but also for normal wound repair processes.

Interestingly, it has been shown that the human intervertebral disc aggrecan inhibits both
endothelial cell adhesion and neurite extension, repelling sensory neurite growth (60,61).
These studies underline once more the role of extracellular matrix components in
angiogenesis and nerve fiber regeneration.

In utero, fetal wounds heal in a regenerative manner without scar (62). Antony et al. suggest
that during development, neurotrophins regulate peripheral innervation formation and that,
after injury, these factors promote the survival and the regeneration of peripheral neurons
(63). Identification of this pattern of neurotrophin and neurotrophin receptor expression in
fetal skin which could be different in adult skin could provide new insights into understanding
the fetal scarless repair mechanisms in response to injury.

In damaged skin, at the level of the nerve fiber, the classical Wallerian degeneration process
cannot be involved as far as the distal part of the nerve ending is destroyed. However, we can
imagine that at the edges of the lesion, similar process can develop. It is well admitted that
macrophages and Schwann cells are actors in the clearance of debris. Surprisingly, it has been
shown in Zebrafish skin that epidermal cells also phagocytose debris generated after injury to
peripheral axons (64). Schwann cells that surround the axon of the fiber ending certainly play
a major role to promote and to guide axon sprout. The growth of these sprouts is supported by
growth factors produced by Schwann cells, particularly neurotrophic factors including
neurotrophins (65). In addition, mesenchymal stem/stromal cells (MSCs) such as skin derived
precursors (SKPs) present in the dermis (e.g. SKPs located within the dermal papillae at the
base of the hair follicle) (see below) can certainly release factors able to act on nerve

regeneration (66).
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3. Deep burn wound management

Skin damages may have multiple causes including genetic disorders, acute trauma, chronic
wounds or surgical interventions. Among them, burn trauma represents a type of injury that
can be caused by heat, freezing, electricity, chemicals, radiation or friction. In 2004, fire burn
injuries affected 11 million people around the world, including superficial and severe cases
(67). Despite significant improvements in terms of mortality, severe burns cause considerable

functional, cosmetic and psychological sequelae and represent a major public health concern

(4).

3.1. Classification of burn depths and gravity

Severity of burn wound and prognosis depend on injury depth and extent of the affected
surface area (68,69). The depth of burn wound varies over time and patient needs to be
evaluated for depth of the wound regularly (Table 1). A first degree burn involves only the
superficial layer of the epidermis without affecting the basal layer. A second degree burn
affects all the epidermis and part of the dermis from a superficial to a deep degree. A third
degree burn or full thickness-burn involves the destruction of all the epidermis and dermis and
may extend to deeper tissues (forth degree burn affects fat layer, muscle or bones). The
severity of the damage is also evaluated by the extent of the surface affected and is expressed
as a percentage of the whole body. For a rapid estimation of the extent of burn wounds, the
“rule of nine” is used (70). However, the Lund-Browder chart provides accurate estimation of
the extent of burn wounds in pediatric patients (68). A calculation program can also be used

for a better estimation (71). Other criteria are also important during the assessment of the burn
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severity, including patient’s age, smoke inhalation, location of burns and medical state of the

patient.

3.2. Burn pathophysiology

Skin burns produce a significant imbalance in tissue homeostasis, and result in both local and
systemic responses. The local tissue damage may be divided into three zones (72). At the
center of the injury, proteins coagulation results in irreversible tissue loss called “coagulation
zone”. This area of necrosis can extend to the adjacent zone of stasis characterized by
decreased tissue perfusion. Indeed, the central zone may damage the adjacent tissue by the
release of inflammatory factors and reactive oxygen or nitrogen species (73). The external
zone of burn wound is called “zone of hyperaemia”, which is characterized by vasodilation
and inflammatory changes without structural damage. If the tissue in the “zone of
hyperaemia” could almost always recover, the evolution of the zone of stasis depends on the
resuscitation technique necessary to rapidly revascularize the tissue (74).

Beyond 10% of burned area, the local damage may become systemic and induce hypovolemia
due to the destruction of the skin barrier function, increased vaso-permeability and plasma
exudation (75). The burned tissue is highly toxic. Indeed, between 100 °C and 500 °C,
melting lipids and membrane proteins create toxic lipid-protein complexes responsible for
serious systemic problems (73,76). These lipid-protein complexes may in part be responsible
in low survival rate of severely burned patients given that administration of anti-lipid-protein
complex serum in burned mice greatly increase their survival (76).

Necrosis also triggers the release of inflammatory mediators that generate local inflammation.
The inflammatory response accompanied by eventual infections may contribute to systemic
effects inducing a systemic inflammatory response syndrome (SIRS) and organ dysfunction,

with a threshold around 20-30% of TBSA burned (77). Systemic disease may cause
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pulmonary edema, severe organ failure, requiring specific care in burn treatment centers. The
inflammatory response is complex and characterized by an early secretion of pro-
inflammatory factors such as TNF-o and IL-6 followed by prolonged anti-inflammatory
response linked to IL-4, IL-10 and TGF-B production (78), leading to a temporary immune-
suppression. Therefore, patients become more susceptible to pathogenic microorganism

contaminations (76).

3.3. Current management of burn injuries

Management of deep burn injuries depends on both depth and surface area of burn wounds
(Table 1). In the particular case of burns, re-epithelialization of injuries of first or superficial
second degree remains possible by the migration of keratinocytes from the edges of the
wound, from hair follicles and sweat glands followed by their proliferation, stratification, and
re-differentiation to form an intact epithelium (79). Antimicrobial creams and occlusive
dressings are applied on the wound to avoid infection, to limit wound progression and to
improve epithelialization progression (80).

In contrast, in more severe skin burns such as deep partial thickness or full-thickness burn,
epithelial regenerative elements residing in the basal layer of the epidermis and in the dermis
(i.e. epidermal appendages such as hair follicles) are fully destroyed. In these cases, only a re-
epithelialization from the edges of the wound is possible (81). Full-thickness wounds larger
than 1 cm diameter need special treatment to prevent delayed re-epithelialization and
extensive scar formation that reduces mobility and induces cosmetic deformities (79). To
date, standard medical treatment for severe skin burns consists in rapid eschar excision and
split-thickness skin autograft taken from healthy skin of the same patient. The grafts are

usually taken several times from the same area, once the donor site has had sufficient time to
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regenerate (79,82). Skin grafts are meshed to stretch the graft and so that they can cover a
larger area.

Besides being slow to heal and painful, skin autograft is very difficult to perform in patients
with burns affecting over the 50-60% of the TBSA because of the poor availability of healthy
tissue. Different techniques are currently available over the different burn treatment units
around the world. The main objective is to reconstitute permanently the dermis and epidermis
in the injured area. The first, and faster, alternative is the grafting of allogeneic skin, coming
from cadaveric skin that can be obtained from skin banks. However, allografts cannot cover
the patient wounds permanently because the epidermis is rapidly rejected even if burned
patients are immune-suppressed (83). Sandwich techniques can be applied for more
permanent covering alternatives where widely meshed split-thickness skin autograft are
covered with narrowly meshed allografts (84) or where widely expanded postage stamp
autografts regularly distributed over the wound bed (Meek technique) (85) are combined with
an overlay glycerol preserved allograft (modified Meek technique) (86).

In 1975, Rheinwald and Green described for the first time the culture of epidermal sheets
(Cultured Epidermal Autograft, CEA) produced with human autologous keratinocytes derived
from a small sample of uninjured skin (87). Several burn treatment units used the technique of
Cuono which consists on the early debridement of all burned tissue in the wound and the
coverage of it with meshed expanded cryopreserved allografts coming from cadaveric skin.
Later, allografts are abraded to remove mechanically allogeneic epidermis and CEA are
applied directly to the allogeneic dermal bed, taking benefit of a pre-revascularized matrix
(88). Since then, several combined procedures have been developed to overcome the lack of
donor sites. Among these methods, the combination between the Meek technique and sprayed

autologous cultured keratinocytes (89) has given interesting outcomes.
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Other alternative methods such as the “combined technique” can also be used (90). The first
steps of Cuono technique can be applied until epidermis abrasion. Then, widely meshed
autografts are grafted followed by the application of CEA. Keratinocytes from CEA will
colonize mesh autograft and play a trophic role for epidermal regeneration. If this technique
seems interesting in terms of percentage of engraftment, it needs enough available healthy
skin to collect autografts. That's why the Cuono technology remains widely used despite a
varying degree of graft take.

Grafting efficiency of CEA is highly variable and depends mainly of the metabolic status of
the patient. However, nowadays, there is no other option to enhance patient survival and to
provide enough surface for the epidermal barrier (91,92). However, several drawbacks with
the use of CEA have been noticed such as poor dermo-epidermal junction maturation, their
high cost, their fragility, the use of animal proteins and/or cells in the culture process, and the
variable grafting efficiency (93). Several kind of acellular biomaterial can be used in
combination or not with CEA grafting to improve grafting efficiency (Table 2).

For example, to overcome these weaknesses, researchers have cultured CEA on fibrin
matrices firstly obtained from purified fibrinogen (127,128) and more recently on fibrin
matrices obtained from clotted human plasma (human plasma-based epidermal substitute)

(129,130) (Figure 3).

4. Chronic sensory disabilities following deep burn injuries

The local destruction of the cutaneous nerve fiber network during a burn injury leads to an

immediate neuropathy, which is obviously more serious in the context of a full-thickness burn

(see above). Although nerve fibers may regenerate after a skin grafting and subsequent wound
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healing, their density often remains lower than before the injury (39,131-133). The
persistence of the neuropathy is shown to be associated with some risk factors. For instance,
the electrical cause is the more deleterious (134,135). Especially, a low-voltage electrical burn
induces more frequent sequelae than a high-voltage injury and correlates with the occurrence
of a mononeuropathy (136,137). Other additional factors promote the neuropathy. For
example, the prevalence is higher in adults and in people displaying a large TBSA (over
20%), a full-thickness burn or a hypertrophic scar (39,134,138).

As the cutaneous innervation is crucial for wound healing, the persistence of a neuropathy
delays it (14). Furthermore, neurological symptoms such as sensibility losses, itch, paresthesia
and pain may occur. These complications are common in the first months following the burn
injury but often gradually decrease with time. However, depending on the anatomic site of the
scar or on the injury severity, they can impact the patient’s quality of life and even delay their

overall rehabilitation (139-141).

4.1. Sensibility losses

A lot of burned patients complain of a transient or permanent loss of sensibility, which affects
their perception of temperature, pressure or touch and is very often associated with painful
sensations and paresthesia (142). Hermanson et al. were among the first to assess the
sensibility in burned patients using quantitative sensory measurements (143). They
demonstrated that in years following burn, the touch threshold is increased at the scar site
compared to the uninjured contralateral side skin. Such an abnormality is noticed in
spontaneously healed scars and in early and late excised grafted scars. These findings suggest
that treatments fail to improve the touch sensibility and that the severity of the burn injury
doesn’t influence the occurrence of a sensibility loss. A more recent study that enrolled a

larger number of patients confirmed that the touch threshold is increased in scars compared to
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uninjured skin from healthy volunteers. However, deep burns requiring skin graft displayed
significantly higher touch threshold than superficial burns (142). It was the same for the heat
pain threshold and the two-point discrimination, which measures the spatial tactile acuity. The
assessment of the cold sensibility revealed that this threshold is significantly lower in deep
burns than in superficial burns, still confirming that the scar sensibility loss does depend on
the severity of the injury. Other studies focusing on grafted patients also reported impaired
sensory thresholds in their scars and demonstrated that the sensibility loss was correlated with
the amount of the neuronal structures within the burned area (132,133,144). However, a local
deficiency of these structures is insufficient to explain a sensibility loss, since a lot of patients
also exhibit slightly impaired sensory thresholds at their uninjured contralateral side
(142,143,145). These data highlight that a sensibility loss also results from an altered

processing of the afferent or the efferent information by the central nervous system.

4.2. Itching and paresthesia

A paresthesia is an abnormal perception that may be a long-term sequelae after burn. The
severity, the frequency of this symptom and the impact on the quality of life is assessed using
questionnaires. They revealed that more than two thirds of patients suffer from paresthesia,
which the most frequent are tingling, stiffness, numbness or pinpricks (146,147). Itching is
also a common post-burn paresthesia and affects at least 70% of burned patients at 1 or 2
years post-burn, and still around 40% in the following decade (12,148,149). The itching
prevalence also depends on the injured anatomic sites. Contrary to the face and the neck, legs
are typically affected, especially in the first months (150,151). Furthermore, itching is
generally more intense during the first 3 months post-burn and its severity significantly
decreases between the 3™ and 12" month post-burn, a timeframe consistent with the

improvement of the scar quality (148,151,152). Sometimes, however, it delays the healing
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because of frequent scratching and alters the quality of life (153). Moreover, numerous risk
factors promote the itching persistence and severity. Willebrand et al. demonstrated that it is
positively associated with the total burned skin area while Kuipers et al. rather showed that it
is stronger as the number of itchy body surface areas is high (151,154). This apparent
discrepancy between the two studies likely stems from the fact that the post-burn time was
around few years in the first one and only around few months in the second one. Furthermore,
participants were slightly older and had average TBSA and percentage of full-thickness burn
twice higher in the Willebrand’s study. Overall, itching appears to be related to the severity of
the burn injury since other data highlighted its positive association to the time required for
wound healing and to the number of surgical interventions (150,155). Moreover, grafted burn
scars are itchier than non-grafted scars, especially in the first months (151). This findings
support previous outcomes showing more substance P-immunoreactive fibers in grafted skin
in the first years post-burn, although the number of the total nerve fibers was decreased (132).
Interestingly, substance P was shown to trigger a release of histamine, promoting itching
(156,157). This corroborates outcomes showing that this neuropeptide is especially elevated
in case of hypertrophic scars, a complication tightly correlated with thermal injury and highly
associated with itching (158-160). All of these data support many neurophysiological studies
demonstrating that itching results from neuropathic mechanisms (161). Finally, the post burn
itching mechanism is close to that observed in numerous peripheral neuropathic diseases

(162).

4.3. Pain
Post-burn pain characteristics differ depending on the stage after the injury. Post-burn pain is
first acute pain but becomes chronic pain in the rehabilitation phase. Three main subtypes of

acute pain are distinguished (163). The procedural pain occurs during treatments, whereas the
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background pain continuously affects patients even immobile. Afterwards, with the decrease
in analgesic medications and the increasing ability to move, patients may complain of upsurge
in pain called “breakthrough pain”. The mechanism of acute pain is directly related to the
tissue lesions, which lead to inflammation and damaged nerve structures. Inflammation is
mediated by cytokines such as IL-6, which promotes hyperalgesia (164). For their part,
injured nerve fibers exacerbate this inflammation by releasing neuropeptides such as
substance P and CGRP, well known to mediate the neuropathic pain. The chronic pain arises
later during the recovery phase and may persist for a long time. Indeed, it affects at least one
third of patients in the first years post-burn (146,147). A survey among 336 burned patients
reported that 52% of them complained of pain although their injury happened ten years before
(11). For those with ongoing pain, at least half declared that it impeded their daily life and
even delayed their rehabilitation. Chronic pain especially affects older patients and those
displaying higher grafted burned skin areas (165). In addition, pain is exacerbated by factors
such as temperature changes, light touch and also positions, especially when injuries affect
extremities (165,166). It is worth noting that psychological aspects should also be addressed.
For instance, anxiety and depression are associated with greater pain (167). Conversely, pain
raises the level of anxiety and depression (167). This highlights that emotional distress needs
to be considered to minimize pain, even if pain often significantly decreases between the 3"
and the 12 month post-burn (152,165). As well as for itching, this positive trend corresponds
to the improvement of the scar quality. The understanding of the mechanism of chronic pain
mainly focuses on substance P and CGRP. Although pain has been related to the release of
these two neuropeptides, chronic neuropathic pain was rather found to be related to the release

of CGRP (41,168).
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5. Strategies to improve wound healing and nerve regrowth

5.1. Biomaterials

The quality of wound healing relies also to the capacity to recover the sensitivity of the
repaired areas, contributing also to promote tissue repair. In order to support nerve regrowth
and therefore improve the recolonization of wounded regions by neuronal extensions, various
biomaterials have been studied. These biomaterials can be separated into two families:
materials of biological origin and synthetic materials. In both cases, the addition of specific
molecules was tested in order to improve the adhesion of the nerve fiber endings onto the
material and to enhance their growth.

The biomaterials aimed at the fabrication of a nerve support must have specific properties
such as biocompatibility, biodegradability, and mechanical strength. Several bioengineered
conduits have already been commercialized for clinical applications in order to replace a
sectioned or crushed nerve (169), yet none of these products present a full functional
recovery. Moreover, these kind of tridimensional materials do not address directly the
problem of skin reinnervation and some modifications in the structure or the shape of the

biomaterials are needed to be used to this specific aim.

5.1.a. Material properties

Biomaterials aimed at guiding axonal regrowth need to present various properties. Their
biocompatibility is linked to the interactions between the material and its biological
environment. Tissue-material interactions should not provoke irritation or create significant
inflammatory response.

Moreover, the material needs to be flexible in order to react to the movements of the skin

without breaking or creating a rigidity of the wounding (170). Ideally, electrical conductivity
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could help nerve regeneration by stimulating axon regrowth and orientation due to the
charged membrane surface. To date, most of the materials described in the literature are non-
degradable (171). The disadvantages of the non-biodegradable materials or non-fully
absorbable materials resides in the risk to provoke a reaction of the immune system which can
lead to scarring or prolonged inflammatory responses. Additionally, a second surgical
intervention is often required to remove the material.

In the specific case of wound healing, a biomaterial must tolerate modifications in physico-
chemistry during the various phases of cell proliferation, re-epithelialization and extracellular
matrix reorganization. Mechanical properties (traction force, elongation at rupture, tenacity)
of the materials need to be tested together with the other cell types from the area (mainly
fibroblasts and keratinocytes) in order to verify the efficacy of the biomaterial and its

potential interactions with other cells from the healing area.

5.1.b. Natural materials

Because of their enhanced biocompatibility and specific structural motifs, natural polymers
have been commonly used (172). Chitosan, derived from chitin, is an amino polysaccharide
significantly studied in the literature. This material is considered non-toxic and biocompatible
with many applications in tissue engineering and particularly for wound healing (173). It is
used to create matrices presenting adjusted degrees of porosity. In addition, chitosan has been
described to interact with laminin, fibronectin, and collagen type IV, molecules from the
extracellular matrix able to promote adhesion, migration and differentiation of cells from the
nervous system (174). Another promising candidate, collagen, the main structural protein in
the body, is often employed as a scaffold supporting cells (175). The use of collagen to make

nerve conduits restores partially the nerve functionality (176,177). Nevertheless, mechanical
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properties and biodegradation rates of chitosan and collagen are not optimal (173). So, the
studies are directed to other natural materials such as hyaluronic acid, keratin or silk fibroin.
The ability of hyaluronic acid to augment keratinocyte proliferation, fibroblast migration, and
endothelial cell angiogenic responses in the wound makes it a useful biopolymer for wound
healing (178). Hyaluronic acid can limit scar tissue and can facilitate a functional recovery of
the neo-formed tissues (179). It is interesting to underline that fetal skin which is rich in
hyaluronic acid heals without scar (180). Moreover, this molecule can accelerate nerve
regeneration (178,181).

As for hyaluronic acid, mouse fibroblasts proliferate well on keratin covered surfaces,
demonstrating the biocompatibility of this molecule (182). Furthermore, tridimensional
materials made of a scaffold of keratin have been used for specific bioapplications such as
wound dressings or hydrogels or scaffold guiding the growth of neural tissues (183-185). In
vivo study showed that keratin hydrogel stimulated Schwann cells’ migration and
dedifferentiation from the proximal nerve ending. Moreover, these materials could block the
infiltration of macrophages described during the Wallerian degeneration of the distal nerve
part (186).

Silk fibroin, another natural polymer, has been used for various applications such as
cosmetics or food additives. In recent literature, silk proteins have also been described as
having vast promise in biomedical and engineering fields because of its specific biological
properties, such as biocompatibility, biodegradability, and induced limited inflammatory
responses in vivo (187-190). These promising properties have encouraged development of
silk fibroin-based nerve conduits. Indeed, the use of silk fibroin allows high structural
integrity and nervous tissue colonization (191) (Figure 4). Moreover, silk has robust
mechanical properties, no toxicity towards neurons, and can be biofunctionalized permitting

the acquisition of new physico-chemical properties (192-194).
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5.1.c. Synthetic materials

Synthetic materials also can be used in tissue engineering: they are structurally stable for
implantation, are biomimetic and able to support repair and regeneration. Moreover, these
materials are not toxic for cells of the original tissues or organs.

Poly(e-caprolactone) (PCL) is a synthetic polymer presenting good mechanical properties
while being biocompatible and biodegradable (195). The nanofibrous PCL is a dependable
substrate supporting the growth and differentiation of a variety of cell types (196). PCL is also
used in the development of tubular nerve guidance systems (197). Poly lactic acid (PLA) is
another example. Gautier et al. have demonstrated the qualities of resorption and
biocompatibility of this material specifically using Schwann cells and neurons from the spinal
cord (198). Despite some concerns about the structural stability of the material, PLA scaffolds
loaded with Schwann cells and surgically inserted in transected rat spinal cord allowed the
regrowth of neural tissues and their revascularization, proving the high interest of this
material (199).

Poly (d, I-lactic-co-glycolic acid) (PLGA), a copolymer from lactic acid and glycolic acid, has
also been used as therapy vectors for the release of active molecules or cells. This copolymer
typically offers a higher primary stability and is more amenable to macro/micro-structure
formation than natural biomaterials. Among the various use of this material, nanospheres or
microspheres made of PLGA have gained popularity, mainly because of their tissue
compatibility and biodegradability (200). Chang et al. showed that animals implanted with
conduits made of PLGA and supporting cultured Schwann cells, presented a higher number of
myelinated axons (201).

Others polymers are also used such as polyvinyl chloride (PVC), polyethylene glycol (PEG),

polyamidoamine (PAA) with some success. Indeed, an improvement in the density and size of
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the axons as well as greater myelin thickness were observed following the use of PAA nerve
conduits (202). Other teams have shown that the use of PVC improves myelination and high
structure integrity (203). Koob et al. have shown greater improvement in exploratory behavior

of injured PEG-treated rats (204).

5.1.d. Biofunctionalization of the biomaterials

Various strategies have been tested in order to give specific functions to the biomaterials
either based on structural modifications of the material in order to enhance cell adhesion (205)
or to stimulate cell growth at its contact (169). Specifically for neuronal-related application,
the option of grafting or adding a neurotrophic factor to the biomaterial has been widely
studied. The most common factor inserted is NGF, followed by glial cell-line derived
neurotrophic factor (GDNF), BDNF, NT-3, and neurotrophin-4/5 as these molecules have
been demonstrated to improve peripheral nerve regeneration. These proteins have been added
either in microspheres or in microgels (206-208) in order to diffuse in the microenvironment
or in regenerative conduits (209,210) aimed at guiding the peripheral nerve regeneration.
Nevertheless, if neurotrophic factors seem in fact the most accepted candidates to
biofunctionalize materials aimed at helping reinnervation, other molecules have been shown
to have interesting potentials. For example, bone morphogenetic protein-2 (BMP-2) was
demonstrated as able to increase the number of axons and their diameter (211).

No study has been found in the literature where growth factors specific to the epidermal layer
were added to biomaterials to help skin reinnervation although fibroblast growth factors were

described as allowing a faster rehabilitation after peripheral nerve injury (212).

5.2. Skin substitutes
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As mentioned above, to allow the coverage of deep and extensive burns over a TBSA of more
than 50 to 95%, tissue-engineered epithelial sheets made of patient’s own keratinocytes were
developed in the 70s by Rheinwald and Green (87,213-215). These CEA were successfully
grafted on wounds promoting efficient epidermal healing, with esthetical and functional
results not as good as split-thickness skin grafts, but efficient to cover burns (216). The
technique was improved over the years, allowing to prepare the sheets in about two weeks in
sufficient amounts (217). The production of CEA was manufactured as Epicel® in USA under
the Humanitarian Device Exemption regulations by Genzyme (which sold this division to
Aastrom Biosciences in 2014). The main advantage of using CEA is the reduction of the
delay to achieve a complete coverage of patient’s extensive burns, leading to a better survival
and a shorter stay in the burn unit (218). Its main drawback is the high cost of the treatment
(that may exceed 100,000US$ per patient) that could be compensated by the reduced cost of
the shorter hospitalization, and the lower need for subsequent reconstructive surgeries.

For a better healing quality of the wound, the combination of the epidermal autograft with a
dermal compartment would be desirable (219). However, since dermis is a three-dimensional
tissue, its in vitro reconstruction proved to be much more complex than the epidermis. Beside
the development of acellular dermal substitutes (112), the first attempt to produce a living
dermal substitute was performed by Bell in 1979 by culturing fibroblasts embedded in a
collagen gel (220) (Table 2). This dermal tissue was then seeded with keratinocytes to
produce a tissue-engineered skin (221). This living skin equivalent permitted to demonstrate
the importance of the presence of dermal fibroblasts in skin substitutes to rapidly promote the
formation of a functional neo-dermis in humans (222) (Table 3).

This skin substitute was then manufactured by Organogenesis as Apligraf®, made of human
fibroblasts and keratinocytes. Since it is a heterologous tissue, it is only intended to treat

venous leg and diabetic foot ulcers as temporary biological dressing, but not burns, which
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require autologous epidermal graft for permanent coverage (238). Some attempts were made
to apply Apligraf over meshed split-thickness autografts transplanted on burn wounds and
showed cosmetic and functional advantages, but the cost/benefit ratio of this approach is
questionable (239). Moreover, whereas Apligraf was shown to efficiently improve ulcer
healing, it is rarely used in the clinic because of its high cost, and the availability of much
cheaper dressings with nearly similar efficacy and much easier handling (240). Several other
dermal substitutes were developed to produce tissue-engineered skin, based on the culture of
fibroblasts in a deepidermized dermis (241,242), a collagen sponge (231,243), a
biodegradable mesh (244) or a self-assembled fibroblast sheet (245), to name a few. Most of
these models were transplanted in mice and showed good results in terms of take or dermal
and epidermal remodeling (245,246). One aspect has recently been given more attention, the
delay of complete vascularization of the graft. Indeed, it was shown that even if skin
substitutes were rather thin, a compromised survival of the epidermis could be feared in
dermal compartments thicker than 100 micrometers, exceeding the maximal distance for
diffusion of oxygen and nutrients from the wound bed (247). These skin substitutes would
then require specific strategies to enhance vascularization of the dermis, through the
incorporation of endothelial cells to promote capillary formation in the tissue prior to graft
(248-250). A complete vascularization of the graft was observed only four days after
transplantation, instead of two weeks in the control without capillaries, through the
inosculation of the network of capillaries from the endothelialized skin substitute with the
vascular network of the wound bed (250).

Another important aspect of the application of an autologous skin substitute to cover deep and
extensive burns is to what extent it may improve nerve regeneration and sense of touch
recovery. It was shown that transplantation of skin substitutes on mice promoted nerve

migration into the graft after 3 to 4 months (251,252). However, the major advantage of
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reconstructing skin in vitro is that it is possible to incorporate into it molecules or cells that
could specifically enhance nerve regeneration (253). Moreover, it is possible to investigate the
potential benefit of these approaches in vitro through the design of an innervated
reconstructed skin. This model was developed by the incorporation of sensory neurons
extracted from mouse embryo dorsal root ganglions. They were seeded on the fibroblast-
populated sponge one week before keratinocytes to form a nerve network (Figure 5). The in
vitro impact on nerve migration of any molecule or cells incorporated into the model can be
analyzed by quantification of the number of sensory neurites (254). These neurons, whereas
they were of mouse origin, were shown to release neuropeptides (substance P) efficiently
modulating the human keratinocyte behavior (255). Thanks to the high versatility of these
tissue-engineered skin models, it was possible to perform a wound in the epidermis to analyze
the effect of innervation on re-epithelialization in vitro, compared with a control without
nerves. Wound closure was shown to be twice faster in presence of nerves, because of their
release of substance P. Indeed, this effect was completely abolished after blocking the NK1
receptor for substance P with an antagonist (255). This experiment showed that nerves
promote a direct enhancement of re-epithelialization, independently of their induction of
neurogenic inflammation in vivo, which is well-known to improve wound healing (31).

To enhance in vivo nerve regeneration of skin substitutes after graft, different approaches
were investigated. Laminin, a natural component secreted by Schwann cells and known to
facilitate axon migration was added into a tissue-engineered skin, and induced a major
increase in nerve migration after graft. It allowed complete functional recovery of all the three
types of cutaneous nerve fibers (i.e. AB, Ad and C fibers) (256). Since laminin is a stable and
large molecule, it could be easily incorporated in skin substitutes. The addition of Schwann
cells in the tissue-engineered skin also demonstrated an enhancement of nerve regeneration

and pain and temperature perception recoveries, but should be more complex and expensive
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to use for a clinical application (254). Target cells for sensory nerves, such as Merkel touch
domes (251) or immature hair follicles (257) could increase the speed of nerve regeneration
and promote a guided nerve migration and a potential sense of touch recovery through the
connection of nerves with a sensory unit, but are not yet feasible in a human context for a
clinical application. Even if some of these techniques have been proved to be efficient to
increase nerve regeneration, the question of the quality and functionality of this
neoinnervation remains to be clearly demonstrated in clinical studies.

These encouraging results point out the potential of skin substitutes to markedly improve
sensory recovery. However, split-thickness skin also contains Schwann cells and Merkel
touch domes, but its graft does not always promote good sense of touch recovery. The main
reason for that might be the anarchic structure of the wound bed, which may compromise
efficient nerve regeneration (142,145). Thus, the time required to prepare these skin
substitutes could become an important limitation in their use, since a delay to cover burns
could induce an unfavorable remodeling of the wound bed preventing further nerve migration.
In addition, all these exciting improvements of skin substitutes with more sophisticated
characteristics and enhanced potential for tissue function recovery face the challenge of their
manufacturing, which emerged as a bottleneck to translate these skin substitutes to the clinic.
As observed with the CEA technology, whereas it was beneficial to patients, its high cost has
always limited its application. Moreover, this complex manufacturing process has even
probably never been profitable for the company itself. The reason is the need to use patient’s
own cells for each treatment, and one can easily see how the extraction of fibroblasts in
addition to keratinocytes, and the reconstruction of the dermal compartment may dramatically
increase the cost and the time of the tissue production, that may not be affordable to most

burn units. An alternative could be to develop a local non-profit unit of production of skin
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substitutes linked with regional burn units, but that would require highly qualified personal
and regulatory approval, such as those established in Europe and Canada.

Finally, these autologous skin substitutes are clearly highly beneficial to the burn patients, and
may be not that expensive on a long-term perspective. This is why it is still so important to
continue developing an ideal tissue-engineered skin, easy to manufacture and as efficient as
possible to achieve complete cutaneous recovery of function, including tactile and pain

perception.

5.3. Mesenchymal and induced pluripotent stem cells

Biomaterials and skin substitutes can be associated with stem cells as another strategy to
promote nerve sprouting from the surrounding healthy tissue and guide axonal regrowth
within the forming scar. MSCs have the capacity to generate different cell lineages and offer a
wide range of future therapeutic approaches in skin healing and sensory recovery (258).
Because of their multipotency, large ex vivo expansive potential and immunotolerance
properties, autologous MSCs represent an attractive source of stem cells that could be
included in a wound management protocol (259). Another major drawback in the study of
skin reinnervation is the limited sources of human mature sensory neurons that can be used in
in vitro and in vivo experimental models. Using MSC-derived neurons or induced pluripotent

stem cells (iPS) could help overcoming this issue in futur experimental investigations.

5.3.a. Therapeutic potential of adult mesenchymal stem/stromal cells
The skin and more precisely the dermal compartment is a source of adult MSCs named SKPs.
These SKPs possess capacities of self-renewal and multipotency and they can differentiate

into both mesodermal and neural progeny (260). Neural crest stem cells have a similar broad



g

TissuedEngi neering Part B: Reviews

ement of skin burn injuries: challen

and sensory recovery (doi: 10.1089/ten. TEB.2016.0195)

ectives in wound healin

perg)

ges an

and accepted for publllcation, but h

ergassegywitangand proof correction. The final published version may differ from this proof.

asyet to un

&

Biotechnological management of skin burn injuries: challenges and perspectives in wound healing and sensory recovery (doi: 10.1089/ten. TEB.2016.0195)
This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Biotechnolo

gical man

This article has been peer-review

Page 34 of 73

34

potential and contribute to development of the dermis and, in this regard, SKPs form a neural
crest-related stem cell niche that arises in the skin during embryogenesis and persists in lower
numbers into adulthood (261). SKPs are present in several locations in the dermis hence
translating cellular heterogeneity. The largest and most studied source is located within the
dermal papillae at the base of the hair follicle (262,263). Other sources of dermal SKPs
include the hair bulge, sebaceous gland, sweat gland as well as a perivascular niche recently
described (262-264). After isolation, SKPs are maintained in culture as spheroids and express
specific markers such as nestin, vimentin and fibronectin (265,266). Neuronal differentiation
is achieved using AMPc and a cocktail of neurotrophins such as BDNF, NT-3 and NGF while
glial differentiation into Schwann cell is promoted by the addition of forskolin and heregulin
1B to the culture medium (267-270) (Figure 6). Little is known regarding the role of SKPs in
skin wound healing or a potential involvement in sensory nerve regrowth but several studies
have shown that SKP-derived Schwann cells help promoting sciatic nerve regeneration in
rodents (271-273). It suggests that SKP-derived Schwann cells are fully functional in
supporting axonal regrowth following injury. Recently, Ke et al. have shown that collagen
sponges seeded with SKPs facilitate skin wound healing in diabetic mice by promoting local
vascular regeneration (274). Another study has also shown that intradermal injections of
SKPs around full-thickness excisional cutaneous wounds in diabetic mice mediate faster
wound closure and re-epithelization, earlier angiogenesis and might promote wound
reinnervation (275). Interestingly, another in vivo study has highlighted that SKPs
transplantation in denervated cutaneous wounds on nude mice promotes wound closure and
local secretion of neuromediators such as substance P, CGRP as well as NGF (276). More
studies have to be performed in order to determine if local or transplanted SKPs can either
differentiate into Schwann cell following skin injury or if they somehow help mediating the

migration of local Schwann cells and/or axonal regrowth of nerve fibers during scarring. The
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study of SKPs “secretome” could shed new light into factors contributing to this phenomenon.
Thus, the isolation of SKP-derived autologous precursors from adult human skin represents
an accessible and very promising source of neurons and Schwann cells to help restore normal
innervation after skin damage.

The adipose tissue represents another valuable and abundant source of adult MSCs. It has the
advantage of being accessible using liposuction procedures. Adipose-derived stem cells
(ASCs) can be easily expanded ex vivo by isolating the stromal vascular fraction from the
adipocytes using enzymatic digestion. Like SKPs, autologous ASCs can be driven towards
neurogenic or glial differentiation (277,278). Many studies have shown the ability of ASCs-
derived Schwann cells in promoting peripheral nerve regeneration and wound healing but
again, little is known about their potential in mediating cutaneous sensory recovery following
skin damage. The subcutaneous adipose tissue could then be of interest as a close by reservoir
of ASCs following skin injury. Recently, Tomita et al. have shown that in rats, Schwann cell-
like cells differentiated from ASCs could improve the cutaneous nerve regeneration in skin
flaps by producing NGF and BDNF (279).

Bone marrow (BM)-derived MSCs have also been used in the treatment of skin wounds
(280). BM-derived MSCs are isolated using bone marrow aspirate and selected in vitro. The
bone marrow aspirate is an invasive method and the number of MSCs present in the BM swab
is limited (0.001 to 0.01% of total BM nucleated cells). The selection of BM-derived MSCs
relies on their ability to adhere to plastic before expansion. Interestingly, BM-derived MSCs
have been suggested to participate in tissue repair. They are able to migrate to the damage
tissue and differentiate into wound healing (myo)fibroblasts (281). BM-derived MSCs have
also been shown to differentiate into neurons and Schwann cells (282,283).

In addition, extra-fetal tissues are a source of great interest. In extra-fetal tissues, MSCs have

been described in the amniotic fluid and in different layers of placenta, principally the amnios



g

TissuedEngi neering Part B: Reviews

ement of skin burn injuries: challen

and sensory recovery (doi: 10.1089/ten. TEB.2016.0195)

ectives in wound healin

perg)

ges an

and accepted for publllcation, but h

ergassegywitangand proof correction. The final published version may differ from this proof.

asyet to un

&

Biotechnological management of skin burn injuries: challenges and perspectives in wound healing and sensory recovery (doi: 10.1089/ten. TEB.2016.0195)
This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Biotechnolo

gical man

This article has been peer-review

Page 36 of 73

36

and chorion. They have also been described in Wharton’s jelly around cord vessels. These
cells have particularly interesting immunological features and hepatocyte-like differentiative
capacities (284). It has also been shown that progenitor cells are present in gingival
connective tissue (285). Based on their ability to differentiate into several lineages, to
proliferate from single cells, to induce calcium deposits, and to secrete collagen in vivo after
transfer on hydroxyapatite carriers, these cells correspond to gingival multipotent progenitor
cells. The exceptional healing capacity of the gum can be correlated with the presence of
these progenitor cells which also represent new safe therapeutic strategy for wound healing.

It gradually became apparent that MSCs ability to change a pathological environment and
enhance wound healing is not only related to their capacity of differentiation but also to their
ability to modulate the behavior of other cell types. Their activities mainly go through the
secretion of different kinds of bioactive molecules (e.g. growth factors, cytokines,
chemokines) (286). They are also able to realize mitochondrial transfer and to produce
microvesicles and exosomes containing protein, mMRNA, miRNA or mitochondrial fragments
(287,288). Thereby, Zhang et al. have shown that exosomes derived from perinatal MSCs are
able to accelerate the healing of skin burns by increasing the re-epithelialization and
angiogenesis process via Wnt and PI3K/AKT signaling pathways (289). Finally, it is possible
to optimize MSCs efficiency by modulating their culture environment with various kind of
stimulation, called priming or licensing (288). This optimization has two objectives: (i) to
prepare them to the environment in which they will be injected to and (ii) to modulate their
behavior to counterbalance or promote a physiological reaction. For example, a pre-treatment
with hypoxia (290) or with cytokines such as TGF-f1 (291) or TNF-a (292) can enhance
wound healing. Studying the paracrine communication of MSCs in both their differentiated or

naive state could also be of foremost interest.
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5.3.b. Induced pluripotent stem cells

Induced pluripotent stem cells or iPS were first generated in 2006 using both embryonic and
adult mouse fibroblasts (293,294). The experimental protocol consists in the genetic
reprogramming of somatic cells into pluripotent stem cells by targeting four specific genes:
Oct4, Sox2, KIf4 and c-Myec. Thus, human iPS display characteristics of embryonic stem cells
and can generate a wide range of cell types including neurons (294-296). The generation of
iPS-derived Schwann cells has not been reported so far. The major advantage of iPS is the
availability of the source material, a simple skin biopsy being necessary to collect dermal
fibroblasts. However, the genetic reprogramming of fibroblasts, maintenance and
differentiation of iPS is technically challenging and time-consuming. Moreover, in order to
reduce safety concerns associated with viral vectors, protocols using plasmids or recombinant
proteins channeled into the cells have been developed (297,298).

As an alternative to iPS, the direct conversion of fibroblasts into neurons using small
molecules has recently been described. Using a cocktail of chemicals and neurotrophic factors
such as forskolin and CHIR99021, a selective inhibitor of glycogen synthase kinase 3,
researchers were able to generate functional neurons in 21 days (299,300). This method
represents a new advantageous tool to generate mature human neurons that could be used in

future experimental approaches.

5.4. Bioprinting

Since several years, printing technology has rapidly progressed from two dimensional (2-D)
to three dimensional (3-D) where different kinds of material can be used. Therefore, the field
of tissue engineering has benefited from this technology to improve the seeding of a wide
range of cells, onto solid and biodegradable scaffolds. It allows reproducing the complex 3-D

structure of extracellular matrix components and designing tissues by adding bio molecules.
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Several 3-D bioprinting techniques exist such as inkjet bioprinting, microextrusion
bioprinting, and laser-assisted bioprinting (301-303). Laser-assisted printing is the most
favorable technique to maintain cell viability and print good quality vertical structures with
high resolution. Microextrusion is the best technique to apply ink with high viscosity and
inkjet bioprinters are used when low cell density is needed.

Materials or bio-inks must be easily printable to facilitate handling and deposition. They must
be biocompatible for long-term transplantation, must degrade at rates that matche the ability
of cells to produce their own extracellular matrix while displaying short-term stability.

Several tissues and organs can be printed efficiently. For example, a proof of concept for skin
bioprinting has been demonstrated by several teams with a good cell viability and architecture
of the tissue (304) and also with a bio-printed vascularization (305). Moreover, Skardal et al.
show that it was possible to bioprint dermal substitutes combined with MSCs directly in situ
inducing faster wound closure (306). However, functional vascularization, that need to be
fully addressed in order to allow engineered tissue to survive, could be improved with the use
of Pluronic F127 as a sacrificial bio-ink that can form open lumens concurrently with the
printing of encapsulated cells around the vessels (307). Innervated bio-printed skin has not yet
been produced but fabrication of a synthetic nerve graft by printing cell-dense tubes of
Schwann cells and MSCs have been shown to be a promising approach for nerve regeneration
(308). While bioprinting technology is promising in wound healing, several improvements
have to be made in terms of rapidity of printing and of bio-engineering complex hollow

structures.

6. Conclusions and perspectives



Page 39 of 73

g

gineering Part B: Reviews

d

Tissue En

njlurieﬁ: challenges an

and accepted for publication, but h

ement of skin burn i

and sensory recovery (doi: 10.1089/ten. TEB.2016.0195)

ectives in wound healin

perg)

asyet to un

ergassegywitangand proof correction. The final published version may differ from this proof.

&

Biotechnological management of skin burn injuries: challenges and perspectives in wound healing and sensory recovery (doi: 10.1089/ten. TEB.2016.0195)
This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Biotechnolo

gical man

This article has been peer-review

39

The skin is a protective barrier but also serves as interface between our body and the external
environment. It is indeed a highly sensitive organ. In addition to different cell types
expressing many sensory receptors (309), skin comprises several sensory nerve fiber subtypes
that perceive and convey various external stimuli, such as temperature variations, pain or
tactile stimuli.

In addition to their sensory role, cutaneous nerve fibers are known to be tightly involved in a
variety of physiological and pathological processes (25). It has been shown in several clinical
observations that injury to the peripheral nervous system impairs wound healing, sometimes
leading to the development within the affected area, of chronic wounds. Wound healing may
be delayed, as demonstrated by studies using in vivo models of peripheral neuropathies by
denervation or chemical impairment of nerve fibers (47). Likewise, patients with peripheral
neuropathies due to lepromatous leprosy, spinal cord injury or diabetes mellitus develop
ulcers that fail to heal (14). In elderly, cutaneous repair processes are also less efficient (310),
partly due to a degeneration of the nerve fibers within the skin (311). Moreover, a defective
innervation and/or inadequate levels of neuropeptides can negatively influence healing
processes underlining that innervation and neuropeptides are major players for normal
cutaneous repair. Promoting normal reinnervation and adequate levels of neuropeptides
during the healing process are certainly crucial to improve skin healing and to avoid the
appearance of pathological situations.

When a major skin injury occurs such as a deep burn, sensory nerve endings are destroyed
while cell bodies in the dorsal root ganglia along the spinal cord are maintained. Cutaneous
nerve regeneration and progressive reinnervation of the scar is possible and may result either
from the regeneration of injured nerve fibers present in the wound bed or from the sprouting
of nerve fibers located in the adjacent uninjured area. However, the nerve regeneration

process is imperfect, as suggested by frequent impairment of skin perceptions or the



g

TissuedEngi neering Part B: Reviews

ement of skin burn injuries: challen

and sensory recovery (doi: 10.1089/ten. TEB.2016.0195)

ectives in wound healin

perg)

ges an

and accepted for publllcation, but h

ergassegywitangand proof correction. The final published version may differ from this proof.

asyet to un

&

Biotechnological management of skin burn injuries: challenges and perspectives in wound healing and sensory recovery (doi: 10.1089/ten. TEB.2016.0195)
This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Biotechnolo

gical man

This article has been peer-review

Page 40 of 73

40

occurrence of chronic pain and disabilities. After wound healing, itching and pain tend to
decrease (152). However, cutaneous nerve fiber populations have been shown to be modified
in scars compared to matched uninjured skin. Interestingly, the density of the C fibers, which
are involved in pain perception, is higher in scars (132). Not surprisingly, this density is also
increased in scars from patients with chronic pain compared to scars from patients without
pain (41). These outcomes suggest that unmyelinated small C fibers involved in the pain
detection regenerate faster than Ad and AP myelinated fibers. Overall, it becomes clear that
the regeneration of the destroyed nerve fibers needs to be improved during skin healing
management and medical treatment.

Until now, various techniques have been used in wound care. It includes occlusive dressings,
autograft application, dermal allograft and skin substitute, or highly expanded autograft,
depending on the size of the lesion (see Table 1). Currently, the development of more
sophisticated skin substitutes is in progress and aims to improve a patient’s rehabilitation.
New designs of skin substitutes, innovative biomaterials and stem cells represent promising
therapeutic strategies that could both promote correct wound healing and sensory recovery. In
these innovative products, the presence of neuronal cells, Schwann cells and/or the addition of
neurotrophins could favor the development of a more physiological innervation in the
repaired skin and minimize sequelae often associated with burn scar. The 3D bio-printing
technology could especially offer new opportunities. This recent approach in which cells and
materials are directly deposited on or in a patient (312) could be particularly interesting after
extensive burns. However, these new biotechnological approaches are still challenging to
apply in burn wound management. Limitations such as cost, ethical issues for stem cells and
complex designs of skin substitutes still need to be addressed. Moreover, technical limitations
related to the incorporation and/or the “selection” of appropriate innervation structures,

especially tactile corpuscles, have to be overcome.
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Figure 1: Skin innervation. In these pictures, cutaneous nerve fibers are labeled using an

anti-PGP 9.5 antibody revealed by a secondary FITC-conjugated antibody (the cell nuclei are
colored with DAPI). The superficial nerve plexus follows the dermal-epidermal junction in
the dermis and the small sensory nerve fibers Ad and C sprout into the epidermis reaching its
upper layers (A, B). Autonomic nerve fibers are the main fibers innervating the skin

appendages, i.e. hair follicles (C) and sweat glands (D). Scale bars: 100 pm.
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Figure 2: Schematic representation of the skin innervation. Skin nervous structures are

endings of sensory and sympathetic neurons which have their cell bodies located respectively

in dorsal root ganglia (DRG) and paravertebral sympathetic ganglia (PSG) along the spinal

cord. Sensory and sympathetic skin structures are located respectively on the left and on the

right part of the schema. Concerning sensory intraepidermal free endings, they are constituted

of AJ fibers and of peptidergic and non-peptidergic C fibers. In addition, axonal free endings

are also present in the dermis. DEJ: dermal-epidermal junction.
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hPBES
Epicel®

based epidermal

substitute (hPBES) and of a cultured epithelial autograft Epicel®. For the hPBES

Figure 3: Hematoxylin phloxine saffron staining of a human plasma

substitute, a well-organized basal layer of cuboidal or columnar keratinocytes is observed,

similar to healthy skin. Scale bar: 100 pm.
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fibroin nanofibers. Primary cell culture of dorsal root ganglia cells obtained from young

Figure 4: Scanning electron microscopy observation of neuron cells on electrospun
male Sprague Dawley rats (1-3 months old) are seeded on electrospun fibroin nanofibers (*).

Close interactions between axonal growth cones and fibroin nanofibers are visualized

(arrows).
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Figure 6: Neuronal and glial differentiation of human skin-derived precursors (SKPs).

(A): Neuron-like SKPs express B III tubulin (red). (B): Schwann cell-like SKPs express

S100B (green). DAPI is used for nuclear staining (blue). Scale bars: 100 pum.
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Table 2: Acellular biomaterials commercially available and/or used in clinics for
burn treatment (dermal replacement and /or skin repair).
Source of biomaterial Product/Company References
Human skin or Cadaveric skin Tissue Bank, Alloderm® Life | (77,94-102)
dermis (cryopreserved, cell Corporation (NJ, USA),
glycerolized, Gammagraft® Promethean
lyophilized or Life Science (USA),
acellularized) Glyaderm® Euroskinbank
(The Netherland)
Animal dermis Porcine acellularized | Strattice Tissue Matrix® Life | (103-106)
dermis cell Corporation (NJ, USA),
Epiflex® DIZG, EZ Derm®
Monlycke healthcare (USA)
Lyophilized porcine Oasis Wound Matrix® Johnson | (105)
intestinal mucosa with | and Johnson
growth factor
porcine tendon Pelnac + bFGF (106)
derived atelocollagen
type | +bFGF
Lyophilized bovine Matriderm® MedSkin (107-111)

dermis

Solutions Dr.Suwelack,
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Terudermis® Olympus

Terumo Biomaterials (Japon)

Bovine collagen and (112)
chondroitin 6-sulfate
Bovine collagen and Integra® Integra Lifescience (113-115)
glycosaminoglycans

Synthetic polymer | Polylactide, Suprathel® Polymedics (116-118)
trimethylene Innovations GmbH (Germany)
carbonate and e-
caprolactone
copolymer
Nylon coated with Biobrane® Smith and Nephew | (119-121)
porcine peptides (USA), AWBAT® Aubrey Inc.

(USA)

Biopolymer Derivatives from Hyalomatrix PA® Fidia (122-125)
hyaluronic acid advanced biopolymers (ltaly)
Allogenic fibrin Engineered skin substitute (126,127)
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Table 3: Cellularized biomaterials commercially available and/or used in clinics for

burn treatment (skin repair).

Source of biomaterial Cells Product/Company | References
Synthetic PGA/PLA Neonatal Dermagraft® (223,224)
polymer foreskin Organogenesis, USA
fibroblasts
Animal Bovine Neonatal Apligraf® (225-228)
collagen fibroblasts Organogenesis, USA
Bovine Autologous
collagen fibroblast
Bovine Neonatal Orcel® Forticell (229)
collagen fibroblasts and | Bioscience, USA
keratinocytes
Bovine Autologous Tissue- (230)
collagen cultured cultured skin
keratinocytes autografts
and fibroblasts
Bovine Autologous Engineered skin (231-233)
collagen + cultured substitute Amarantus
GAG keratinocytes USA
and fibroblasts
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(234,235)
(236,237)

MyDerm® Cell
Tissue Technology,
Engineered skin

Malaysie
substitute

Autologous
cultured
keratinocytes
and fibroblasts
Autologous
cultured
keratinocytes
and allogenic
fibroblasts

Autologous
fibrin
Autologous
Plasma

Human
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