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Osteonecrosis of the femoral head is a frequent complication in adult patients with sickle cell disease (SCD). To
delay hip arthroplasty, core decompression combined with concentrated total bone marrow (BM) treatment is
currently performed in the early stages of the osteonecrosis. Cell therapy efficacy depends on the quantity of im-
planted BM stromal cells. For this reason, expanded bonemarrow stromal cells (BMSCs, also known as bonemar-
row derived mesenchymal stem cells) can be used to improve osteonecrosis treatment in SCD patients. In this
study, we quantitatively and qualitatively evaluated the function of BMSCs isolated from a large number of
SCD patients with osteonecrosis (SCD-ON) comparedwith control groups (patients with osteonecrosis not relat-
ed to SCD (ON) and normal donors (N)). BM total nuclear cells and colony-forming efficiency values (CFE) were
significantly higher in SCD-ON patients than in age and sex-matched controls. The BMSCs from SCD-ON patients
were similar to BMSCs from the control groups in terms of their phenotypic and functional properties.
SCD-ON patients have a higher frequency of BMSCs that retain their bone regeneration potential. Our findings
suggest that BMSCs isolated from SCD-ON patients can be used clinically in cell therapy approaches. This work
provides important preclinical data that is necessary for the clinical application of expanded BMSCs in advanced
therapies and medical products.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Sickle cell disease (SCD) is an autosomal recessive disorder charac-
terized by the presence of abnormal hemoglobin S (Hb S). The polymer-
ization of deoxygenated Hb S causes deformation of red blood cells
(RBCs) into less pliable cells called sickled RBCs (Lonergan et al.,
2001). These cells are prematurely destroyed at high rates, which lead
to anemia. Furthermore, the sickled RBCs induce vascular occlusions
that lead to tissue ischemia and infarction (Serjeant, 1997). Severe
osteoarticular injuries often occur in patients with SCD. Osteonecrosis
induced by a temporary or permanent loss of the blood supply to
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bone is a common complication that occurs in up to 50% of SCD patients
and affects primarily the hip, but other joints and sites can also be affect-
ed (Hernigou et al., 2006; Vichinsky et al., 1999). The prevalence of
osteoarticular injuries appears to be similar between homozygous pa-
tients (Hb SS), heterozygous patients (Hemoglobin S combined with
C; Hb SC) and patients with various types of sickle-β-thalassemia
(Akinyoola et al., 2009). Joint replacement is a controversial treatment
option considering the young age of SCD patients (under 30 years of
age) and is associated with several complications: intra-operative
bleeding, infections, and loosening or early loss of the prosthesis
(Marti-Carvajal et al., 2012). Autologous bone marrow (BM) grafting
combined with core decompression is an effective strategy that pre-
serves the native joint (Hernigou et al., 2008). However, SCD patients
frequently have multifocal osteonecrosis (sometimes six to eight
sites), and the number of osteoprogenitor cells present in BMharvested
from the iliac crest is not sufficient to treat all of the lesions during the
same procedure (Flouzat-Lachaniette et al., 2009; Hernigou et al.,
2008). Given that anesthesia is risky in SCD patients, it would be useful
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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to expand osteoprogenitor bone marrow stromal cells (BMSCs, also
known as bone marrow-derived mesenchymal stem cells) in vitro, so
that several lesions could be treated in the same procedure, thereby re-
ducing the number of procedures requiring anesthesia (Stanley &
Christian, 2013). BMSCs represent a promising therapeutic approach
for bone tissue engineering because of their differentiation capacity
and bone regenerative potential (Lee et al., 2003; Maumus et al.,
2011). However, BMSCs also play a role in hematopoïesis; therefore,
the changes occurring in SCD may reflect not only a hematopoietic dis-
order but also abnormalities in the activity of BMSCs (Bianco & Robey,
2004). As described by Kuznetsov and others, genetic defects or micro
environmental changes in the BM can alter the number or biological ac-
tivity of stromal cells (Bianco & Robey, 1999; Kuznetsov et al., 2009).
The number of stem cells in the BMSC population can be approximated
by measuring the colony-forming efficiency (CFE) (Kuznetsov et al.,
2009), and appears to be higher in SCD patients than in normal individ-
uals (Hernigou & Beaujean, 2002). However, the number of these cells
has not been thoroughly characterized in a large series of patients, and
the biological activity of BMSCs from SCD patients has not been studied
in vitro. Furthermore, not all patients with SCD develop osteonecrosis,
which suggests that the influence of BMSCs and their therapeutic poten-
tial is heterogeneous (Vichinsky et al., 1999). Indeed, BMSCs from some
SCD patients seem to have a higher capacity for spontaneous bone re-
pair than those from most SCD patients with bone disorders.

These data collectively suggest that the function of BMSCs is affected
in SCD patients. Here, we quantitatively and qualitatively evaluated the
function of BMSCs isolated from a large number of SCD patients with
osteonecrosis (SCD-ON) compared with control groups (patients with
osteonecrosis not related to SCD (ON) and normal donors (N)). A cell
therapy approach involving ex vivo expanded BMSCs appears to be a
useful method to limit the anesthesia risk to SCD patients and will in-
crease the number of osteoprogenitor cells delivered to the site of
osteonecrosis. To determine whether these cells are an innovative con-
servative treatment of SCD osteonecrosis, we characterized BMSCs from
SCD patients and studied their osteogenic capacity in vitro and in vivo.

2. Materials and methods

2.1. BM collection

In the context of a validated cell therapy process in orthopedic
surgery, we retrospectively reviewed 340 consecutive patients who
underwent osteonecrosis treatment with autologous BM grafting
(Hernigou&Beaujean, 2002). One hundred and seventy patientswere af-
fected by SCD and osteonecrosis (called in this study “SCD-ON patients”),
comprising 85 female and 85male patients (Age range of patients: 15–40
years; Average age of female patients =29 +/− 6 years; Average age of
male patients =31 +/− 6 years; Average weight = 73 +/− 15 kg).
BM was harvested from these patients outside of a sickle cell vaso-
occlusive crisis. The remaining one hundred and seventy patients had
osteonecrosis not related to SCD (called “ON patients”) and consisted of
85 female and 85 male patients (Age range of patients: 14–40 years;
Average age of female patients =30 +/− 7 years; Average age of male
patients =32 +/− 6 years; Average weight = 65 +/− 12 kg).

BM was harvested under general anesthesia from the iliac crest of
patients diagnosed with osteonecrosis. Then, a concentrated buffy-
coat of approximately 50 ml was obtained after centrifugation on a
Cobe 2991 cell separator (Terumo, Lakewood, Colorado) prior to
the BM grafting procedure. The BM samples used in this study
corresponded to the samples routinely used for product qualification
in the quality control department for cell therapy between 2004 and
2012. Nucleated cells from the BM were counted automatically before
buffy-coat concentration using an ABX Pentra 60 C+ (Horiba ABX,
Montpellier, France). In addition, in the context of BM allografting in he-
matology, we retrospectively reviewed BM from 14 normal donors
(called “N patients”). Informed consent was obtained from each patient
(Approval number from the French research ministry: DC-2009-1049).
All work presented was based on groups of patients whowerematched
in age and sex.

2.2. Platelet lysate (PL) preparation

Platelet apheresis collections performed at the “Etablissement
Francais du Sang” (EFS, Rungis, France) were biologically qualified
according to the French legislation. The platelet count in each prod-
uct was measured automatically (with an ABX Pentra 60 C+, Horiba
ABX, Montpellier, France). Only samples containing 1 × 109–2.5 ×
109 platelets/ml were retained; they were frozen at−80 °C and sub-
sequently used to obtain PL containing platelet-released growth fac-
tors. Different batches were obtained (from two to five apheresis
collections) to adjust the concentration to 50 × 106 platelets/ml.
This concentration of platelets was previously shown to facilitate
three-fold faster expansion of BMSCs compared with fetal bovine
serum (FBS) (StemCell Technologies, Grenoble, France) (Chevallier
et al., 2010).

2.3. BM cell cultures

After automated counting, the nucleated cells from fresh BM were
seeded at 2 × 105 cells/cm2 in tissue culture flasks. A cell sample from
fresh BM was used to confirm the BMSCs characteristics, as previously
described (Chevallier et al., 2010). The BMSCs were expanded in α-
modified Eagle's medium (αMEM) (PAA, Les Mureaux, France) supple-
mented with 5% PL and 0.5% ciprofloxacine (Bayer Pharma, Puteaux,
France). Heparin (2UI/ml, Sanofi-Aventis, Paris, France) was added to
avoid clot formation. The cultures were maintained in a humidified at-
mosphere with 5% CO2 at 37 °C, and the culture medium was changed
twice a week. When the cells reached 80–90% confluence (passage 0;
P0), they were detached using Trypsin/EDTA (PAA) and then replated
at 1000 cells/cm2 until 80–90% confluence (passage 1; P1). Figs. 3, 4,
and 5 have been done with the same BMSCs samples from ON patients,
normal donors (N) and SCD patients (SCD-ON).

2.4. Clonogenic potential

The colony forming efficiency (CFE) assays were performed to eval-
uate the clonal expansion of BMSCs. Nucleated cells from concentrated
BM were seeded at 20 000 and 80 000 cells/cm2 in duplicate into
25 cm2 tissue culture flasks with αMEM containing 10% FBS (not heat
inactivated; ref. 06,471 from STEMCELL™ Technologies, Grenoble,
France) and supplemented with 0.5% ciprofloxacine. After 10 days of
culture, the cells were washed with saline solution (NaCl 0.09%)
(B. Braun, Melsungen, Allemagne), fixed in methanol (VWR, Fontenay
Sous Bois, France) and stained with 7% Giemsa (RAL Technopolis, Bor-
deaux, France) at pH 7 for 15min. The number of colonies was counted
using an inverted microscope (magnification ×25).

2.5. Colony-forming units-alkaline phosphatase (CFU-ALP+) assay

Wemeasured the number of ALP+ colonies in the BM preparations
from three ON patients, three normal donors (N) and four SCD patients
(SCD-ON). Nucleated cells from fresh BMwere seeded at 20 000 and 80
000 cells/cm2 in duplicate into 25 cm2 tissue culture flasks with αMEM
containing 10% FBS (not heat inactivated; ref. 06,471 from STEMCELL™
Technologies) and supplemented with 0.5% ciprofloxacine, 50 μM L-
Ascorbic Acid-2-phosphate (AA), 10 mM β-glycerophosphate (β-gly)
and 0.1 mM dexamethasone (Dex) (Sigma Aldrich, Saint Quentin
Fallavier, France). After 10 days of culture, the formation of osteoblast
progenitors was detected using an alkaline phosphatase assay, per-
formed according to the manufacturer's specifications (Sigma Aldrich).
The total number of colonies was then determined by counterstaining
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with Mayer's hematoxylin solution. Alkaline phosphatase positive colo-
nies were counted by two independent investigators.

2.6. Cell proliferation analysis

To compare cell proliferation at different passages between BMSCs
isolated from SCD-ON patients, ON patients and normal donors (N),
BMSCs (passage 1, P1) were plated at 1000 cells/cm2 into 25 cm2 tissue
culture flasks. When the cells reached 80–90% confluence, the viable
cells were detached, counted with trypan blue (in six replicates by
two independent investigators) and replated at 1000 cells/cm2 until
80–90% confluence (passage 2, P2). To estimate the duration of onemi-
tosis event (i.e., the doubling time), we used the following formula: t/n,
where t is the time for the BMSCs plated at 1000 cells/cm2 to reach 80%
confluence and n is the number of population doublings (the number of
mitosis events to reach 80% of confluence). The number of population
doubling was calculated by using the classical formula n = log(y/x)/
log 2, where x is the number of cells originally plated and y is the num-
ber of cells at 80% of confluence (Chevallier et al., 2010). This experi-
ment was repeated for multiple successive passages until t was higher
than 15 days.

2.7. Flow cytometry

BMSCs (P1) from three ON and SCD-ON patients were resuspended
in HBSS 1× (Invitrogen by Life Technologies, Villebon sur Yvette,
France) with fluorescein isothiocyanate (FITC), phycoerythrin (PE) or
allophycocyanin (APC) conjugated antibodies against CD90, CD105,
CD73 or CD34, or the corresponding mouse IgG1 isotype (all from
Becton Dickinson and Company, Franklin Lakes, NJ, USA). The cells
were washed and examined using a FACSCanto™ II (Becton Dickinson
and Co). The expression of surface molecules was analyzed using BD
FACS DIVA™ software (Becton Dickinson and Co.).

2.8. Osteogenic differentiation of BMSCs

For the in vitro osteoblast differentiation assay, BMSCs were seeded
in 6-well plates. At 80% confluence, themedia containing PLwas supple-
mented with 50 μM AA, 10 mM β-gly and 0.1 mM Dex (Sigma Aldrich)
for the treatedwells (T). The controls wells (untreated: UT)weremain-
tained with media containing only PL. On days 0, 7 and 14, cells were
harvested, washed twice with HBSS 1× (Invitrogen by Life Technolo-
gies) and lysed for RNA extraction (Qiagen, Courtaboeuf, France). On
day 21, the monolayers were fixed in 70% ethanol for 1 h at 4 °C and
stained for 15minwith Alizarin Red-S (Sigma Aldrich). To quantitative-
ly assess the relative amounts of calcium deposition, the Alizarin Red-S
stain was extracted with acetic acid, neutralized with ammonium
hydroxide, and then analyzed by colorimetric detection at 405 nm, as
described by Gregory et al. (Gregory et al., 2004). Each condition was
performed in duplicate.

2.9. Quantitative real-time reverse transcription-polymerase chain reaction
(RT-qPCR)

Total mRNA was isolated from BMSCs cultures on days 0, 7 and 14
after P2 using an RNeasy mini-kit, according to the manufacturer's
Table 1
TaqMan® Primers used for RT-qPCR of human genes.

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) Hs99999905_m1
Runt-related transcription factor 2 (Runx2) Hs00231692_m1
Alkaline phosphatase (ALP) Hs00758162_m1
Osteocalcin (OC) Hs00609452_g1
Bone sialoprotein 2 (IBSP) Hs00173720_m1
protocol (Qiagen). DNAse (Qiagen) – treated RNA was reverse tran-
scribed with RT superscript III (Invitrogen). The cDNA was amplified
using TaqMan-Polymerase chain reaction (Applied Biosystems) with
specific primers for the genes of interest (Table 1) and monitored with
an ABI Prism 7500 sequence detection system (Applied Biosystems,
Rotkreuz, Switzerland). The amounts of cDNA of interest were normal-
ized to GAPDH (ΔCt = Ct gene of interest − Ct GAPDH). The results are re-
ported as relative gene expression (2−ΔCt × 100 000). Quantitative PCR
was performed in duplicate for each of the six different BMSCs samples
analyzed for both conditions.

2.10. Bone-graft substitute

We used the processed human cancellous allograft Tutoplast®
(Tutogen Medical). Tutoplast® processing involves delipidization, an
osmotic cell destruction treatment, hydrogen peroxide treatment, and
washing cycles to remove the noncollagen proteins, followed by a sol-
vent dehydration step and, finally, a γ-irradiation procedure. The proc-
essed cancellous bone was cut manually into fragments that were 2–
4 mm in size. Cancellous bone particles (porosity of 60%, macropores
of 100–500 μm) of equivalent size, volume and weight (8 mg) were
used to ensure a comparable surface area for analyses (80 m2/g in
average).

2.11. Cell seeding

Bone substitutes were dampened in αMEM at 37 °C for 2 h prior to
cell seeding. Then, they were loaded with 3 × 105 BMSCs in 20 μl of cul-
ture medium in untreated 96-well culture plates for 3 h at 37 °C. The
bone graft substituteswere subsequently cultured in 1ml of PLmedium
at 37 °C in a 5% CO2 atmosphere for seven days (Chevallier et al., 2010;
Coquelin et al., 2012). Cell-free scaffolds were incubated under similar
conditions and served as controls.

2.12. Evaluation of cell number by DNA quantification

Cell seeding was performed using an indirect method. The cells at
the bottom of the untreated 96-well culture plate that were not at-
tached to the scaffold were lysed with Tris-EDTA (TE) + 0.1% Triton
X-100 and digested with 0.2 mg/ml of proteinase K (Invitrogen). The
samples were incubated overnight at 52 °C, and then a succession of
three heat shocks was performed, followed by sonication of lysates for
10 min. The DNA samples obtained were labeled with Picogreen®
(Invitrogen), which only binds double-stranded DNA. After 10 min of
incubation in the dark, the fluorescence was measured at 520 nm on a
spectrofluorometer (Victor Wallac, PerkinElmer, Courtaboeuf, France).
A standard curve was used to quantify the cell number.

2.13. Scanning electron microscopy (SEM)

Three hours and seven days after seeding, bone substitutes were
fixed by immersion in 2.5% glutaraldehyde buffer (Sigma Aldrich) at
4 °C overnight. Then, they were dehydrated with increasing concentra-
tions of ethanol (70–100%), and dehydration was completed with
60min of incubation in hexamethyldisilazane (HMDS) (SigmaAldrich).
Finally, the samples were air-dried, sputter coated with gold nanolayer
and analyzed with a scanning electron microscope (JEOL JSN-6301F,
Croissy sur Seine, France) at LISA laboratories (Paris-Est University,
Creteil, France).

2.14. Animal model and implantation procedure

All animal procedures were approved by a local ethics committee
(approval n° 94–612) and conducted in accordance with the European
guidelines for animal care (Directive 2010/63/EU). Nine CB17/Icr-
Prkdc SCID (males, seven weeks old) purchased from Charles River
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laboratories (Chatillon, France) were used in this experiment. The mice
were anesthetizedwith isoflurane, and six subcutaneous dorsal pockets
(0.5 cm incisions) were prepared on each mouse. In each pocket, one
scaffold was implanted and the skin was closed by suture (Ethicon,
San Lorenzo, Puerto Rico, USA). BMSCs from twoON patients, three nor-
mal donors (N) and four SCD-ON patients were tested in nine indepen-
dent animals (n = 12, n = 18 and n = 24 scaffolds, respectively, per
group). Cell-free scaffolds were implanted under similar conditions
and served as controls. After seven weeks, the animals were killed by
an overdose of pentobarbital. The samples were then excised and
immediately fixed in ethanol 70%.

2.15. Histology

Specimens were decalcified for 3 h in 6.8% nitric acid (VWR) and
then rinsed in tap water before being embedded in paraffin. Sections
(3–5 μm) were stained with Masson's Trichrome, which is a three-
color staining protocol comprising nuclear staining with hematoxylin,
cytoplasmic staining with acid fuchsin/xylidine ponceau and collagen
staining with Light Green SF (all from VWR), and visualized using stan-
dard light microscopy. Fifteen sections of each sample were analyzed
(five from the beginning, five from the middle and five from the end).
New bone formation was analyzed and quantified from 12, 13 and 19
sections for the ON, N and SCD-ON groups, respectively, using ImageJ
software. New bone density was defined as the ratio of new bone area
compared with the total implant area.

2.16. Statistical analysis

For cell proliferation analysis, all experiments were performed with
BMSCs isolated fromdifferent patients. Quantitative PCRwas performed
at least in duplicate for each of 12 different BMSCs samples analyzed.
Statistical analyses were performed using the unpaired nonparametric
Mann–Whitney U test (GraphPad Prism5 software), and regression
analysis was done using Microsoft Excel (Microsoft, Redmond, WA,
USA). Differences between groups with a p-value of ≤0.05 were consid-
ered to be statistically significant (*p b 0.05; **p b 0.01; ***p b 0.001). In
all figures, each bar represents the mean ± Standard Deviation (SD).

3. Results

3.1. Colony forming efficiency and number of BM nucleated cells

The BM colony forming efficiency (CFE) was studied in 170 ON pa-
tients and 170 SCD-ON patients matched by age and sex. The number
of nucleated cells per μl of BM was 13 262 ± 4 110 and 16 837 ± 8
018, respectively (mean ± SD; p b 0.001) (Fig. 1A). The CFE values per
106 nucleated cells were 17.2 ± 13.6 and 62.3 ± 49.9, respectively
(mean±SD; p b 0 .001) (Fig. 1B). The CFE values and the number of nu-
cleated cells were drastically elevated in SCD-ON patients. Based on
these criteria, we previously showed similar results for BM fromON pa-
tients (n=14matched by age and sex) and normal donors (N) (n=14
matched by age and sex) (Fig. 1C, D).

Linear regression analysis revealed that age-related CFE decline was
more pronounced in SCD-ON than for ON samples. The inverse correla-
tion between CFE and patient age was statistically significant (r SCD-

ON = −0.22; **p SCD-ON = 0.004 and r ON = −0.18; *p ON = 0.017)
(Fig. 1E). However, the determination coefficient (R2) was close to 0,
highlighting the fact that the ON and SCD-ON samples were not linear
(R2 ON = 0.03; R2 SCD-ON = 0.05).

The number of ALP+ progenitors from ON, N and SCD-ON BM was
evaluated (Fig. 2 Ab). Counter staining showed negative colonies that
were stained purple-bluewithMayer's hematoxylin (Fig. 2Aa). The per-
centage of ALP-positive colonies for each group was not significantly
different. Our data for ON, N, and SCD-ON were 98.7 ± 2.3%, 84.7 ±
4.7% and 100.0 ± 0.1%, respectively (Fig. 2B).
3.2. Cell proliferation

BMSCs growthwas evaluated by comparing the cell number and the
doubling time of BMSCs during successive passages for BM isolated
from six different patients for each condition (ON versus N versus
SCD-ON). The doubling time (DT) of the BMSCs at P1 for each condition
was not significantly different (Fig. 3A). In the subsequent passages,
their proliferation was quite fast between P2 (ON DT P2 = 28.5 ± 3.5;
N DT P2 = 31.5 ± 3.5 and SCD-ON DT P2 = 31.0 ± 4.2 h) and P5
(ON DT P5 = 41.1 ± 7.1; N DT P5 = 41.0 ± 4.9 and SCD-ON DT
P5= 43.6± 7.0 h), after which their doubling time gradually increased
(Fig. 3B). The BMSCsdoublingnumber for each condition increased sim-
ilarly to reach around 38 doubling at P9. Our results showed no signifi-
cant differences in growth kinetics from P1 to P9 between the BMSCs
from each group.

3.3. Phenotypic characterization

Immunophenotypic characteristics of ON (n = 3) and SCD-ON
(n = 3) BMSCs at P1 were compared by flow cytometry (Fig. 4). More
than 94% of the expanded BMSCs for both conditionswere strongly pos-
itive at P1 for CD90, CD105 and CD73, all of which are hallmarks of
BMSCs (Dominici et al., 2006). The cultures did not contain hematopoi-
etic lineage cells, as indicated by the absence of CD34-expressing cells.

3.4. In vitro mineralization

Osteoblastic differentiation was studied after 21 days of confluent
culture in the presence of osteogenic inducers (AA, βGly and Dex)
using BMSCs from ON patients (n = 2), N donors (n = 4) and six
SCD-ON patients (n= 6). Calcium depositionwas examined by Alizarin
Red-S staining, which was quantified by optical density measurements.
In the absence of osteoinductive factors in the medium (UT), no miner-
alization was observed (Fig. 5A). In the presence of osteoinductive
agents (T), SCD-ON, ON and N BMSCs cultures developed equal
amounts of alizarin-positive calcium deposition (Fig. 5A, B).

Osteoblastic gene expression was analyzed after zero, seven and
14 days culture in the presence of AA, βGly and Dex for BMSCs from
six N donors and six SCD-ON patients (Fig. 5C).We observed up regula-
tion of osteoblastic gene expression over time for both groups. At seven
days, this up regulation was significant for the expression of the early
osteoblastic gene Runx2, and at 14 days the late osteoblastic gene
osteocalcin was also significant (**p b 0.01). Although ALP gene expres-
sion was up-regulated in two SCD-ON patients, the difference between
the BMSCs from SCD-ON and N samples was not significant, andwe ob-
served overall similar levels for osteoblastic gene expression for both
groups throughout the time course experiment.

3.5. Cell adhesion, morphology and distribution on the scaffold

To determine whether the osteogenic potential of SCD-ON BMSCs
can be translated to clinical cell therapy approaches, we assessed their
adhesion capacity, morphology and distribution on bone substitutes
that are currently used in orthopedics to bridging the gap in osseous de-
fects compared with BMSCs from normal donors (Jager et al., 2011). To
compare adhesion, we evaluated their seeding efficiency on scaffolds.
As previously described by Coquelin et al., we quantified the cell num-
ber for both conditions by DNA quantification for 12 different BM sam-
ples (Fig. 6A) (Coquelin et al., 2012). After 3 h of static contact, the
number of SCD-ONBMSCs (154 228±81150 cells) adhered to the scaf-
fold was not significantly different from the number of adhered N
BMSCs (179 892 ± 73 290 cells). Cell morphology and distribution
were evaluated by Scanning Electron Microscopy (SEM) (Fig. 6B).
Three hours after seeding, ball-shaped BMSCswere uniformly distribut-
ed on the biomaterial for both groups. After seven days of culture on the
bone substitutes, no differences were observed between the two cell



Fig. 1. Colony forming efficiency (CFE) and the number of bonemarrow (BM) nucleated cells. BM from 170 patients with osteonecrosis not related to SCD (ON) and 170 SCD-ON patients,
included in a protocol for orthopedic cell therapy andmatched by age and gender, were analyzed for (A) the number of nucleated cells per μl of BMand (B) the CFE for 106 cells seeded and
cultured for 10 days. BM from 14 ON patients included in a protocol for orthopedic cell therapy and BM from 14 healthy donors (N) included in a hematology protocol for BM
allografting matched by age and gender were analyzed for (C) the number of nucleated cells per μl of BM and (D) the CFE for 106 cells seeded and cultured for 10 days. Statistical
analysis (Mann–Whitney U test) were performed between values (NS: Not Significant; ***: p b 0.001). (E) Correlations between CFE and age were analyzed for ON (dotted and solid
line; n = 170) and SCD-ON (solid line; n = 170) patients. Linear regression analyses were performed between values for each group. The regression values were r ON = −0.18 for ON
BMSCs (*p ON b 0.05) and rSCD-ON = −0.22 for SCD-ON BMSCs (**pSCD-ON b 0.01). The determination coefficients were R2 ON = 0.03 and R2 SCD-ON = 0.05, respectively.
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sources. SEM analysis showed that the cells from both sources fully
covered the scaffold, forming several cell layers.

3.6. Capacity of SCD-ON BMSCs for ectopic bone formation in vivo

To evaluate the osteogenic capacity of SCD BMSCs for bone forma-
tion in vivo, we performed ectopic implantation of cellularized scaffolds
in immunodeficient SCID mice (n = 6 scaffold per condition). BMSCs
from ON patients (n= 2), N donors (n= 3) and from SCD-ON patients
(n = 4) were tested in nine independent animals (n = 12, n = 18 and
n = 24 scaffolds, respectively, per group). Cell-free scaffolds were im-
planted under similar conditions and served as controls; no bone was
observed for this group (Data not shown). Neovascularization was ob-
served on biomaterials seededwith BMSCs for all three groups. Analysis
also revealedminimal scaffold resorption and no evidence of an inflam-
matory reaction (Data not shown). The scaffold was recognizable by
longitudinally striated collagen highlighted in blue/green by Masson's
Trichrome staining, with mineralized zones in red. In contrast, new
bone tissue appeared blue (areas delimited with dotted lines), with
osteocyte-like cells and osteoblast-like cells observed on scaffolds seed-
ed with ON, N and SCD-ON BMSCs (Fig. 7Aa–f). BM-like elements were
also observed for the three groups tested (Fig. 7Ab, d, f). Quantitative
analysis was performed to compare the total new bone surface for the
three groups. No significant differences were observed, with the aver-
ages being 10.43 ± 20.34%, 13.02 ± 17.86% and 9.55% ± 14.26% of
new bone formation for the ON, N and SCD-ON BMSC groups, respec-
tively (Fig. 7B).

4. Discussion

For several years, BMSCs have been largely studied and used as a
new therapeutic tool for clinical applications because of their
multipotent properties (Dimarino et al., 2013). Osteonecrosis is a seri-
ous complication of SCD (Milner et al., 1991). To treat this bone disease,
we suggest a cell therapy approach with autologous BMSCs expanded
ex vivo.

We evaluated the functional properties of BM stromal cells isolated
from a large number of ON and SCD-ON patients (n = 340). Our CFE
values for ON patients were consistent with those in the literature
(Bernardo et al., 2007; Oreffo et al., 1998), although they were lower
than CFE values reported in some publications (Doucet et al., 2005;
Kuznetsov et al., 2000). This discrepancy may be due to the different



Fig. 2. Evaluation of ALP+ progenitors (CFU-ALP+). Bone marrow (BM) nucleated cells
were seeded at low density and cultured for 10 days in osteogenic medium. (A) CFU-
ALP+ were detected by alkaline phosphatase (ALP) staining in red (a), and negative colo-
nies were stained purple-blue with Mayer's hematoxylin (b). (B) The percentage of ALP
positive colonies in each group. n = 3 in the ON group, n = 3 in the N group and n = 4
in the SCD-ON group. Representative images are shown for each group (magnification
2.5×). CFU-ALP+ assay results are reported as the mean ± SD of duplicate cultures.

Fig. 3. ON, N and SCD-ON BMSCs cell proliferation in αMEM 5% Platelet Lysate (PL).
(A) Doubling time in hours at passage 1 (P1) for the three sources of cells. (B) The number
of population doublings (n), shown in black, and the doubling time in hours, indicated in
gray, were compared over several culture passages from passage 2 (P2) to passage 9 (P9)
for each condition (matched by age and gender). ON BMSCs are shown with dotted and
solid lines, N BMSCs with dotted lines and SCD-ON with solid lines. Statistical analyses
(Mann–Whitney U test) were performed between values and the data are reported as
the mean ± SD.
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sampling techniques used. In our case, a large volume of BMwas collect-
ed before buffy coat concentration.We cannot exclude the possibility of
a variable degree of peripheral blood contamination,whichmay explain
the lowCFE values per 1× 106 nucleatedmarrow cells. Our source of BM
collection cannot be compared with cell suspensions obtained after
flushing fragments of human trabecular bone, as described in others
studies (Doucet et al., 2005; Kuznetsov et al., 2009). Although their
numbers are low, the BM stromal cells capable of forming
osteoprogenitor colonies (CFU-ALP+) represented more than 85% of
the CFE values for ON, N and SCD-ON samples, reflecting their osteogen-
ic potential.

We found that the total nuclear cells counts were significantly
higher in SCD-ON patients than in the ON group. Among these nuclear
cells, the CFE values were also significantly higher in SCD patients
than in the age and sex-matchedONgroup. Consistentwith previous re-
ports, we observed that CFE value frequencies were inversely propor-
tional to age for both conditions, with younger patients showing
higher CFE counts than older patients (D'Ippolito et al., 1999; Galotto
et al., 1999; Kuznetsov et al., 2009). Although the CFE values were
higher in the BM of SCD-ON patients compared with the ON group,
we observed a decrease with age. This inverse correlation with age
may reflect an increase in the frequency of bone complications, such
as delayed fracture healing in elderly individuals (with orwithout SCD).

The high CFE values in SCD patients were first described by
Kuznestov et al. for seven pediatric patients (Kuznetsov et al., 2009).
Our results confirm this finding in a homogeneous large population of
adult patients. SCD is characterized by abnormal hemoglobin, which re-
quires a high turnover of hematopoietic cells in theBM. This disturbance
in the BMmay explain the higher CFE values in SCD patients. The chron-
ic hematopoietic hyperactivity in the BM enables sickled RBCs to be
destroyed and renewedwith RBCs to compensate for hemolytic anemia.
BM stromal cells reside with hematopoietic stem cells. They cooperate
through direct and indirect interactions through the release of cytokines
and growth factors, thus forming the hematopoietic niche (Despars &
St-Pierre, 2011). The high CFE values in SCD patients may sustain a
high rate of hematopoiesis through these various interactions, which
maintain bonemetabolism and hematopoiesis in the BM cavity. Elevat-
ed BMactivity is also observed in other hematological disorders, such as
in some patients with myeloma (Takahira et al., 1994). However,
despite the constitutive activation of the BM in SCD-ON patients, cyto-
metric analysis based on MSCA1+/CD73+/CD90+/CD271+/CD45-
expression did not detect BMSCs in the peripheral blood of these
patients (data not shown). Because BMSCs do not or rarely circulate
(Kuznetsov et al., 2009), the peripheral blood collected during erythro-
cyte exchange procedures is not a viable source of BMSCs, and the BM
remains the main source of primary osteoprogenitor cells.

The BM of SCD-ON patients contained more stromal progenitors
compared with the ON and N groups. Thus, we investigated whether
SCD-ONBMSCswere functionally similar toON andNBMSCs. Regarding



Fig. 4. Surfacemarker expression profiles of ON and SCD-ONBMSCs. Anti-CD90-FITC, anti-CD105-PE, anti-CD73-PE and anti-CD34-PE antibodieswere used for phenotyping, shown in the
dark gray histogram, and compared with their corresponding isotype (light gray) (n = 3 for both conditions).

Fig. 5. Osteoinduction of BMSCs from six independent patients from every condition (ON vs N vs SCD-ON), matched by age and gender, using Ascorbic Acid (AA), β-Glycerophosphate
(βGly) and Dexamethasone (Dex). BMSCs were cultured in Platelet Lysate (PL) medium at P2. (A) Alizarin red staining of untreated (UT) and AA+ βGly+Dex treated (T) cells was per-
formed after 21 days of culture. (B) Alizarin red staining intensity wasmeasured for AA+ βGly+Dex treated cells after 21 days of culture, and the optical density at 405 nm is reported as
ArbitraryUnits (AU). (C) The expression of osteoblastic geneswas analyzed using quantitative RT-qPCR (TaqMan®) on days 0, 7 and 14 for six different BM-MSC samples fromN and SCD-
ONpatients. Each experimentwas done in duplicate, and the values for all geneswere normalized to GAPDHexpression. The results are presented as 2-ΔCt. SCD-ON is shown solid lines and
N in dotted lines. Statistical analysis (Mann–Whitney U test) was performed to compare the SCD-ON and N values (NS: Not Significant) and to evaluate the changes between zero, seven
and 14 days (**: p b 0.01 for SCD-ON and N BMSCs).
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Fig. 6. Cell adhesion, morphology and distribution on a bone substitute. (A) Quantification of the number of BMSCs on scaffolds was performed for BM from 12 independent patients for
both conditions, matched by age and gender (N vs SCD-ON BMSCs). Cell numbers were obtained by DNA quantification using Picogreen®. (B) N and SCD-ON BMSCs were observed with
Scanning Electron Microscopy 3 h and seven days after seeding. Statistical analyses (Mann–Whitney U test) were performed to compare values (NS: Not Significant).
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their proliferative capacity, BMSCs from SCD-ON patients adhered to
plastic and could be expanded for several passages, similar to BMSCs
from ON patients and N donors. The doubling time of each BMSCs pop-
ulation increased similarly with every passage. In addition to adherence
to plastic, the expression of specific surface antigens is another criterion
for defining BMSCs (Dominici et al., 2006). Cultured BMSCs from both
SCD-ON and ON strongly expressed several antigens used to identify
BMSCs (≤ 95% CD105, CD90 and CD73) and did not express hematopoi-
etic antigens. We evaluated their osteogenic capacity in vitro and found
that these cells produced calcium deposits to a similar extent in re-
sponse to a classical osteoinduction cocktail. Furthermore, a semi-
quantitative assay of mineralization and analysis of osteoblastic gene
expression showed no significant differences between SCD-ON and N
BMSCs. Several osteoblastic genes were up-regulated during differenti-
ation, although the differenceswere not significant for ALP andBSP. This
result was due to the use of human PL-supplemented culture medium,
which has been shown to prime BMSCs cultures to undergo osteoblastic
differentiation (Chevallier et al., 2010). We detected a higher level of
ALP gene expression from two of six SCD-ON patients, but expression
was not significantly upregulated compared with the normal donors;
this result mainly reflected the cell heterogeneity between BMSCs
fromdifferent BMdonors in terms of their osteogenic activity. However,
in vitro osteogenic differentiation assays cannot predict the in vivo oste-
ogenic activity of BMSCs (Janicki et al., 2011; Mendes et al., 2004). Tis-
sue regeneration is a complex process that requires the migration,
adhesion and differentiation of BMSCs. To reach the site of an injury
and initiate the healing process, cells must migrate to the target area
and adhere. Cell number and cell morphology are directly linked to
cell differentiation and bone formation (Mankani et al., 2007; Yang
et al., 2012). For this reason, we investigated cellular adhesion and
found that both SCD-ON and N BMSCs attached well to a scaffold and
were uniformly distributed. Thus, SCD does not affect cellular morphol-
ogy, adhesion or distribution. We then used an ectopic model to inves-
tigate the ability of SCD-ON BMSCs to contribute to bone formation
in vivo. We found that the bone-forming capacity after in vivo ectopic
implantation was similar for BMSCs obtained from SCD-ON patients
and those derived from controls (ON patients andN donors). Disparities
between our results and those of other studies are not related to the dis-
ease; rather, they are related to donor-to-donor heterogeneity and sev-
eral other factors, including sampling bias duringBMaspiration, age, sex
and medication of the BM donor (Janicki et al., 2011; Phinney, 2012).
Moreover, in vivo bone formation could lead to extramedullary



Fig. 7. New bone formation in vivo. (A) Histological analysis was performed after seven weeks of ectopic implantation. These analyses were performed for scaffolds with BMSCs from
(a, b) two ON patients, (c, d) three N donors and (e, f) four SCD-ON patients, tested in nine independent animals. Decalcified implants (n= 12, n= 18 and n= 24 scaffolds, respectively,
per group) were embedded in paraffin and stained with Masson's Trichrome (blue/green= collagen and bone; purple = nuclei; pink= cytoplasm). Sc: scaffold; FT: Fibrous Tissue; Oc:
osteocytes; Ob: osteoblast; BM: bonemarrow-like elements. Dotted lines: newbone formation.Magnification (a, c, e) 4×; (b, d, f) 20×. (B) The percentage of newbone formation areawas
quantified from 12, 13, and 19 sections for the ON, N and SCD-ON groups, respectively, using ImageJ software. New bone density was calculated as the ratio of new bone area compared
with the total implant area.
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hematopoiesis in each condition. In conclusion, despite a low number of
sample sizes tested, these results suggest that there is no deficiency
in the osteogenic potential of SCD patient's marrow stromal cell
populations.

In patients with corticosteroid-induced osteonecrosis of the femoral
head,Wang et al. found that bone repair is limited due to the low prolif-
eration ability of BMSCs (Wang et al., 2008). The altered function of
BMSCs may be responsible for the pathogenesis and progression of
osteonecrosis. In contrast, the osteogenic abilities of BMSCs in SCD pa-
tients are not defective either in vitro or in vivo. However, BMSCs do
not appear to prevent osteonecrosis in SCD patients, suggesting that
BMSCs cannot migrate to the injury site (Hernigou et al., 2006;
Poignard et al., 2012). Indeed, injured tissues express specific receptors
or ligands that trigger themobilization of BMSCs into circulation and fa-
cilitate the trafficking, adhesion and infiltration of BMSCs to damaged
tissues through a mechanism that is similar to the recruitment of
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leukocytes to sites of inflammation (Fong et al., 2011; Maumus et al.,
2011). In SCD, these mechanisms seem to be defective because sickled
RBCs block blood flow and, consequently, the supply of BMSCs.

Core decompression (either in combination with or without autolo-
gous BM grafting) is classically used to delay the progression of
osteonecrosis. Core decompression reduces mechanical stress and en-
hances bone repair, but bone reconstruction remains incomplete
(Gangji et al., 2004). One explanation is the small number of bone pro-
genitor cells present in the femoral head and the trochanteric region, es-
pecially in patients with non-traumatic or corticosteroid-induced
osteonecrosis (Hernigou et al., 1999). Decompression is more effective
when combined with autologous BM grafting. Nevertheless, this ap-
proach is only successful during the early stages of the disease, probably
due to the small number of BMSCs in the BM concentrate (0.001–0.01%)
(Hernigou & Beaujean, 2002). The treatment of osteonecrosis is not
standardized in SCD patients. Recently, after a mean follow-up of
three years, decompression combined with physical therapy (i.e., non-
surgical treatment, such as electrical stimulation or physiotherapy)
did not result in a better clinical outcome compared with physical ther-
apy alone in patients with SCD (Marti-Carvajal et al., 2012). We show
here that the BMSCs from SCD patients may be very valuable for the
treatment of osteonecrosis (Kon et al., 2012). Their easy isolation and
expansion could provide a large number of osteoblastic progenitors,
which could limit the number of complications related to anesthesia
and surgery in the SCD patients. Expanded BMSC therapy is a promising
approach to treat bone disorders in SCD.

5. Conclusions

In SCD patients with osteonecrosis, the transplantation of a high
number of osteoprogenitor cells into the hip is associated with a good
outcome (Hernigou et al., 2009). According to ourfindings, SCDpatients
with osteonecrosis seem to be excellent candidates for surgery by core
decompression combined with cell therapy involving autologous con-
centrated BM (Hernigou & Beaujean, 2002). We demonstrated here
that SCD patients have a higher frequency of CFE values in the BM in a
larger patient data based. Given that the BMSCs could be expanded
in vitro and retained their functional osteogenic capacities in vitro and
in vivo, we suggest that BMSCs isolated from SCD patients can be used
clinically in cell therapy approaches. Such an approach has two key ben-
efits: it limits the risk of anesthesia in this disease by facilitating the
treatment of several lesions in the same procedure and increases the
number of osteoprogenitor cells at the site of osteonecrosis. This work
provides important preclinical data that is necessary for the clinical ap-
plication of expanded stromal Cells for advanced therapies and medical
products.
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