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Lack of anti-inflammatory and anti-catabolic effects on basal
inflamed osteoarthritic chondrocytes or synoviocytes by adipose
stem cell-conditioned medium
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Objective: To define whether good manufacturing practice (GMP)-clinical grade adipose stem cell (ASC)-
derived conditioned medium (CM) is as effective as GMP-ASC in modulating inflammatory and catabolic
factors released by both osteoarthritis (OA) chondrocytes or synoviocytes.
Methods: OA chondrocytes and synoviocytes were treated with ASC-CM or co-cultured with ASC. In-
flammatory factors (IL6, CXCL1/GROa,CXCL8/IL8, CCL2/MCP-1, CCL3/MIP-1a and CCL5/RANTES) and
proteinases, such as metalloproteinase (MMP13), a disintegrin and metalloproteinase with thrombo-
spondin motifs (ADAMTS4, ADAMTS5) and their tissue metalloproteinase inhibitors (TIMP1, TIMP3) were
evaluated by qRT-PCR or immunoassays. The involvement of prostaglandin E2 (PGE2) was also analyzed.
Results: Most ASC-CM ratios tested did not decrease IL6, CCL2/MCP-1, CCL3/MIP1-a, CCL5/RANTES on
basal inflamed chondrocytes or synoviocytes in contrast to what we found using ASC in co-culture.
CXCL8/IL8 and CXCL1/GROa were not decreased by ASC-CM on synoviocytes but were only partially
reduced on chondrocytes. Moreover, ASC-CM was less efficient both on basal inflamed OA chondrocytes
and synoviocytes in reducing proteinases, such as MMP13, ADAMTS4, ADAMTS5 and increasing TIMP1
and TIMP3 compared to ASC in co-culture. The different ratios of ASC-CM contain lower amounts of PGE2
which were not sufficient to reduce inflammatory factors.
Conclusions: These data show that ASC-CM has a limited ability to decrease inflammatory and pro-
teinases factors produced by OA chondrocytes or synoviocytes. ASC-CM is not sufficient to recapitulate
the beneficial effect demonstrated using ASC in co-culture with inflamed OA chondrocytes and syno-
viocytes and shows that their use in clinical trials is fundamental to counteract OA progression.

© 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
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Introduction

Mesenchymal stem cell (MSC)-based therapy is a new emerging
clinical strategy that holds great promise for treating immune,
hematological disorders, cardiovascular diseases, and cancer and
for regenerative medicine1e4.

MSC from adult donors obtained from different sources (bone
marrow, adipose tissue etc.)5,6 are considered to be among themost
promising candidate cell types in regenerative medicine applied to
rheumatic diseases such as osteoarthritis (OA)7e9. In particular,
adipose stem cell (ASC) as well as MSC shows the minimal criteria
td. All rights reserved.
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provided by the International Society for cellular therapy for
defining MSC, by displaying an immunophenotype positive for
CD73, CD90, CD105, and negative for CD3, CD14, CD45, CD3110.
Moreover, in contrast to MSC, ASC express CD34, which is lost
during the early phase of culture11. They exert their function using
different pathways, not yet completely understood, that contribute
to augmenting tissue regeneration. Their effects are mainly due, at
least in part, to the “trophic” function of ASCs, characterized by the
production of a large amount of secreted factors, such as chemo-
kines, cytokines and growth factors, which are able to influence the
behavior of the other cells12,13. In particular, it has been shown that
ASC-secreted factors exert immunomodulatory, anti-inflammatory,
anti-apoptotic, pro-angiogenic, proliferative, or chemoattractive
effects13e16. Early studies using MSCs injected into animal models
of OA well documented that they were able to orchestrate the
differentiation process together with differentiated or undifferen-
tiated resident cells for functional tissue restoration17e19. Moreover,
in osteoarticular diseases, it has been shown that the evolution of
OA in animal models might be prevented by intra-articular in-
jections of bone marrow MSC or their delivery on a degradable
hyaluronan scaffold20e22. Recent studies have confirmed that ASC
injected intra-articularly in OA mice or rabbit models also showed
anti-inflammatory and chondroprotective effects23,24.

A body of evidence suggests that pro-inflammatory cytokines
(IL1b, TNFa, IL6), chemokines (CXCL1/GROa, CXCL8/IL8, CCL2/MCP-
1, CCL5/RANTES), metalloproteinases (MMP1, 3, 13) disintegrins
and metalloproteinase with thrombospondin motifs (ADAMTS4,
ADAMTS5) produced by different cell types of the joint tissues, are
released in the synovial fluids of OA patients and contribute to the
disruption of the balance between anabolism and catabolism25e27,
thereby causing progressive destruction of articular cartilage,
changes to the synovium, subchondral bone, degeneration of liga-
ments, and menisci, and hypertrophy of the joint capsule28.

New alternative therapies to counteract OA progression and
restore joint tissue features are needed. The clinical use of these
cells requires ASC production under good manufacturing practice
(GMP) as well as the evaluation of their biosafety and purity,29,30.
We previously showed that GMP-clinical grade ASC in vitro were
able to exert anti-inflammatory effects on chondrocytes and syn-
oviocytes31 and protect chondrocytes from degeneration32, a
typical feature associated with OA.

Cell-free-based therapy might overcome the limitations and
risks associated with the cell-therapy approach. However,
comparative studies are necessary to establish the potentiality of
using conditioned medium (CM) from ASCs instead of ASC in OA
cell-based treatment.

Knowing that ASC preparation is influenced by medium factors
used32, to gain new insight into this issue, we evaluated the effects
of clinical grade GMP-ASC-CM on both OA chondrocytes and syn-
oviocytes and compared these results with our previously pub-
lished data. We focused our analysis on the main catabolic and
inflammatory factors involved in the progression of OA. Our results
clearly show that ASC-CM was less effective than ASC in reducing
inflammatory and catabolic factors secretion by both on OA
inflamed chondrocytes and synoviocytes.

Method

Specimens

Articular cartilage and synovia were harvested from 25 OA pa-
tients (14 women and 11 men; mean age: 69 ± 10.5 years; body
mass index (BMI): 28 ± 4.04; disease duration: 5 ± 3.08 years,
KellgreneLawrence: 3/4)33 undergoing total knee replacement.
Subcutaneous abdominal fat was obtained from 10 healthy patients
undergoing liposuction. The study was approved by the local
ethical committee and all patients provided their informed consent
(Protocol number 15274).

Isolation of human ASC and ASC-CM preparation

Clinical grade ASCs were isolated from subcutaneous abdominal
fat according to GMP30 grown in aMEM supplemented with
platelet lysate (PLP) and characterized for the CD markers CD14,
CD34, CD45, CD73, CD90 (BD Pharmingen, San Jose, CA, USA) and
CD13 (eBioscience, San Diego, CA, USA) as we previously
described30,31 (data not shown).

ASC-CM was prepared by collecting the supernatant, on day 2
and day 7, of ASC seeded at a concentration of 100,000/well in
Transwells® (0.4 mm pore size, Corning, Toledo, OH, USA) in DMEM
with ascorbic acid (0.17 mmol/L), proline (0.35 mol/L) and sodium
pyruvate (1 mol/L) (complete DMEM), previously defined31, and
stored at 4�C before use.

Chondrocyte and synoviocyte cultures

Chondrocytes and synoviocytes were isolated following a
standardized procedure previously described34,35 and used for the
experiments at the first passage. Chondrocytes and synoviocytes
were seeded in the lower chamber of a 6-well plate and both
treated for 7 days (mediumwas changed on day 2) with ASC-CM or
co-cultured with ASC in Transwells® in complete DMEM using a
defined cell ratio (1:8) as we previously reported31. ASC-CM (ob-
tained by pooling the supernatant of day 2 and 7 to have all factors
produced by ASC during the co-culture experiments) was mixed
with DMEM at three different ratios (DMEM:CM 75:25, 50:50,
25:75) and added to chondrocytes or synoviocytes seeded in a 6-
well plate. Control cells were mono-cultures of ASC, chondrocytes
and synoviocytes. The cells were harvested on day 7 for RT-qPCR
analysis and supernatant stored at �80�C. Co-cultures of chon-
drocytes in micromasses were also tested to confirm the results in
monolayers. Briefly, chondrocytes in micromass culture were
inserted in the lower chamber of a 6-well plate, maintaining the
same 1:8 cell ratio and time point, and co-cultured with ASC as
previously described31.

Real time RT-qPCR analysis

Total RNA was extracted from human ASC, chondrocyte and
synoviocyte mono- and co-cultures, using RNA PURE reagent
(EuroClone S.p.A., Pero, Italy) according to the manufacturer's in-
structions, and then treated with DNase I (DNA-free Kit, Ambion,
Austin, TX, USA). Reverse transcription was performed using Su-
perScript VILO (Life Technology) reverse transcriptase and random
hexamers, following the manufacturer's protocol.

Forward and reverse oligonucleotides for PCR amplification of
IL6, CXCL8/IL8, ADAMTS4, ADAMTS5, TIMP1, TIMP3 andMMP13 are
described in Table I. Real-time PCR was run in a LightCycler In-
strument (Roche Molecular Biochemicals, Mannheim, Germany)
using the SYBR Premix Ex Taq (TaKaRa Biomedicals, Tokyo, Japan)
with the following protocol: initial activation of HotStarTaq DNA
polymerase at 95�C for 10min, 45 cycles of 95�C for 5 s and 60�C for
20 s. Amplification efficiency (E) of each amplicon was determined
using 10-fold serial dilutions of positive control cDNAs and calcu-
lated from the slopes of the log input amounts (from 20 ng to 2 pg
of cDNA) plotted vs the crossing point values, according to the
formula: E¼ 10�1/slope. All primer efficiencies were confirmed to be
high (>90%) and comparable (Table I). For each target gene, mRNA
levels were calculated, normalized to RPS9 according to the formula



Table I
Oligonucleotide primers used for real-time PCR

Target gene Primers (forward and reverse) Product size (bp) GenBank accession n� Primer efficiency (%)

RPS9 GATTACATCCTGGGCCTGAA 161 NM_001013 94.5
ATGAAGGACGGGATGTTCAC

IL6 TAGTGAGGAACAAGCCAGAG 184 NM_000600 96.1
GCGCAGAATGAGATGAGTTG

CXCL8/IL8 CCAAACCTTTCCACCC 153 NM_000584 97.8
ACTTCTCCACAACCCT

ADAMTS4 CTGCCTACAACCACCG 293 NM_005099.4 99.1
GCAACCAGAACCGTCC

ADAMTS5 GCACTTCAGCCACCATCAC 187 NM_007038.3 92.4
AGGCGAGCACAGACATCC

TIMP1 CGGTTCGTCTACACCC 266 NM_003254.2 94.8
CACAAGCAATGAGTGCC

TIMP3 GGTCGCGTCTATGATGG 236 NM_000362.4 100.1
CAGGCGTAGTGTTTGG

MMP13 TCACGATGGCATTGCT 277 NM_002427 94.5
GCCGGTGTAGGTGTAGA
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2�DCt and expressed as a percentage of the reference gene since
expressed in the same amount in all conditions tested.

Immunoassays

The concentrations of IL6, CXCL1/GROa, CXCL8/IL8, CCL2/MCP-1,
CCL3/MIP1-a and CCL5/RANTES were simultaneously evaluated on
day 7 using multiplex bead-based sandwich immunoassay kits
(BioRad Laboratories, Segrate, Italy) following the manufacturer's
instructions.

Prostaglandin E2 (PGE2), MMP13, TIMP1 and TIMP-3 were
measured using ELISA assays (R&D Systems, Minneapolis, MN,
USA), according to the manufacturer's instructions. ADAMTS4 and
ADAMTS5 were detected with the ELISA kit from Uscn life Science
Inc. (Wuhan Hubei, China).

Statistical analysis

Statistical analysis was performed using mainly non-parametric
tests since the data did not have a normal and strongly asymmetric
distribution (Friedman ANOVA & Dunn's post hoc for paired data,
KruskaleWallis & Dunn's post hoc for unpaired data and Man-
neWhitney U test for unpaired two-group data). Values were
expressed as the median and interquartile range. CSS Statistica
Statistical Software (StatSoft Inc., Tulsa, OK, USA) was used for
analysis and values of P < 0.05 were considered significant.

Results

Effects of different concentrations of ASC-CM on chondrocytes and
synoviocytes

To establish the effects of ASC-CM, three different ratios of ASC-
CM (DMEM:CM 75:25, 50:50, 25:75) were tested on both chon-
drocytes and synoviocytes and the expression of the main inflam-
matory and catabolic factors (proteinases) involved in OA
progression were evaluated. In Fig. 1(A) the expression levels of IL6
and CXCL8/IL8 are shown. IL6 was not modulated on chondrocytes
or synoviocytes and there were no notable differences between the
ASC-CM ratios tested. A similar trend was also observed for the
chemokines, CCL2/MCP-1, CCL3/MIP1-a and CCL5/RANTES (data
not shown). Conversely, CXCL8/IL8 was significantly down-
modulated in chondrocytes only by the 50:50ASC-CM ratio, as
occurred for CXCL1/GROa (data not shown), whereas it was not
modulated by any of the different ASC-CM ratios on synoviocytes.
Interestingly, the analysis of ASC-CM ratio on proteinases and in-
hibitor [Fig. 1(B)] markers show the same significant differences in
chondrocytes and synoviocytes. In particular ADAMTS5 was
significantly inhibited on both chondrocytes and synoviocytes only
by the 50:50 ASC-CM ratio, whereas TIMP1 was not affected on
either cell type. Based on these results, we chose the 50:50 ASC-
CM:DMEM ratio to perform the subsequent tests.

ASC-CM exerts partial anti-inflammatory effects on chondrocytes
but not on synoviocytes

In our previous report30 we established that ASCs were able to
reduce the release of inflammatory factors only when ASC were co-
cultured with chondrocytes or synoviocytes producing high level of
inflammatory factors (IL6 and CXCL8/IL8 not lower than 400 pg/ml
and 300 pg/ml, respectively for chondrocytes and not lower than
200 pg/ml and 100 pg/ml, for synoviocytes, respectively). We
therefore tested the effects of ASC-CM only on chondrocytes and
synoviocytes matching these characteristics. As shown in Fig. 2(A)
and (C), and in contrast to ASC in co-culture, the effects of ASC-
CM were limited to a decrease of CXCL8 and CXCL1/GROa,
whereas it showed no effect on the other factors analyzed:
furthermore, the effect was limited to chondrocytes. Co-culture
experiments with chondrocytes in micromasses were also per-
formed to confirm our data in monolayers. As shown in Fig. 2(B),
the inhibition of CXCL8, but not IL6, by ASC-CMwas also confirmed
in this 3D culture system.

ASC-CM effect on metalloproteinases and inhibitors

To establish whether ADAMTSs, TIMPs and MMP13 were also
modulated by ASC-CM treatment or ASC co-culture, we tested their
expression on both chondrocytes and synoviocytes at mRNA and
protein level. As shown in Fig. 3(A) in chondrocytes, ACS-CM
significantly induced the expression of MMP13 and reduced
ADAMTS5, whereas ASC in co-culture significantly reduced the
expression of TIMP3 and MMP13. At the protein level [Fig. 3(B) and
(C)], ASC-CM had no effects on the proteinase markers analyzed
except for TIMP1 that was down-modulated, whereas in co-culture
we found a significant decrease of ADAMTS4, ADAMTS5 and
MMP13 and an increase of TIMP1.

As shown in Fig. 4(A), ASC-CM increased the expression of
ADAMTS4 and decreased ADAMTS5 expression but it did not affect
MMP13, TIMP1 and TIMP3 in treated synoviocytes. Conversely, ASC
in co-culture with synoviocytes significantly increased TIMP-1



Fig. 1. Effects of different ratios of ASC-CM (DMEM:CM 75:25, 50:50, 25:75) both on chondrocytes (n ¼ 5) and synoviocytes (n ¼ 5). A. Gene expression of IL6 and CXCL8/IL8 tested
on chondrocytes or synoviocytes treated with three different ratio of ASC-CM. B. ADAMTS5 and TIMP1 gene expression of chondrocytes or synoviocytes treated with different ratios
of ASC-CM. Data show fold increase mRNA expression vs basal chondrocytes or synoviocytes (median with interquartile range). Significant differences vs basal *P < 0.05.
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expression, decreased ADAMTS5 and did not affect ADAMTS4,
TIMP3 or MMP13. At protein level [Fig. 4(B) and (C)], ASC-CM
induced only the release of TIMP-1 and did not affect the other
factors. Conversely, ASC in co-culture significantly decreased the
release of ADAMTS4 and 5, increased TIMP-1 and did not affect
TIMP3 and MMP13.
Fig. 2. ASC-CM effects on IL6 and CXCL8/IL8 chemokines released by chondrocytes (n ¼ 8)
synoviocytes monoculture alone or treated with ASC-CM. Significant differences *P < 0.001. B
ASC-CM. Data are expressed as median with interquartile range. Significant differences * P ¼
chemokines released by chondrocytes (n ¼ 8) and synoviocytes (n ¼ 12). CCL2/MCP-1,CC
viocytes alone or treated with ASC-CM. Data are expressed as median with interquartile ra
PGE2 involvement

We previously showed in co-culture experiments26 that PGE2
produced by ASC was directly involved in the anti-inflammatory
effects through its receptor EP4. Since we found limited anti-
inflammatory effects of ASC-CM we analyzed PGE2 levels in
and synoviocytes (n ¼ 12). A. IL6 and CXCL8/IL8 (pg/ml) detected in chondrocytes or
. IL6 and CXCL8/IL8 (pg/ml) detected in chondrocytes micromass alone or treated with
0.0175. C. ASC-CM effects on CCL2/MCP-1,CCL3/MIP-1a,CCL5/RANTES and CXCL1/GROa
L3/MIP-1a,CCL5/RANTES and CXCL1/GROa (pg/ml) detected in chondrocytes or syno-
nge. Significant differences *P < 0.001.



Fig. 2. (continued).
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Fig. 3. ASC-CM effects on ADAMTS4, ADAMTS5, TIMP1, TIMP3 and MMP13 gene expression and protein release of chondrocytes (n ¼ 8). A. Gene expression of ADAMTS4, ADAMTS5,
TIMP1, TIMP3 and MMP13 was tested on chondrocytes in basal conditions and after treatment with ASC-CM (left side) or co-cultured with ASC (right side). Data are expressed as
median with interquartile range of fold basal release. B. Protein release of ADAMTS4, ADAMTS5, and MMP13 (pg/ml) was tested on chondrocytes in basal conditions and after
treatment with ASC-CM (left side) or co-cultured with ASC (right side). Significant differences: ADAMTS4 P ¼ 0.0286, ADAMTS5 P ¼ 0.0286, MMP13 P ¼ 0.048. C. Protein release of
TIMP1 (ng/ml) and TIMP3 (pg/ml) was tested on chondrocytes in basal conditions and after treatment with ASC-CM (left side) or co-cultured with ASC (right side). Data are
expressed as median with interquartile range. Significant differences: TIMP1 (both left and right side) *P ¼ 0.048.
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different ASC-CM ratios (DMEM:CM 75:25, 50:50, 25:75) before
treating chondrocytes and synoviocytes for 7 days. As shown in
Fig. 5(A), PGE2 levels were approximately 100, 200 and 300 pg/ml,
respectively, a concentration close to that previously detected in
ASC (400 pg/ml) [Fig. 5(A)]. However, when we evaluated PGE2 in
chondrocytes and synoviocytes treated for 7 days with three
different ASC-CM ratios we found that only by using the 50:50 ASC-
CM ratio the amount of PGE2 detected was significantly higher
selectively in chondrocytes; when tested in synoviocytes, the same
ratio showed a trend towards an increase which however did not
reach statistical significance [Fig. 5(B)]. The amount of PGE2
detected was lower both on 75:25 and 25:75 ASC-CM-treated
chondrocytes and synoviocytes.

Discussion

MSC-based therapy for OA treatment is an emerging approach
stemming from the observation that trophic factors released by
these cells can exert anti-inflammatory, anti-fibrotic, anti-apoptotic
effects13,14. Studies that compare the efficacy of cell-therapy
approach with cell-free-based therapy are not available. There-
fore, since we have already shown that GMP-clinical grade
ASC in vitro exert anti-inflammatory effects on chondrocytes and
synoviocytes31 and protect chondrocytes from degeneration32, in
this study we compared GMP-ASC-CM and GMP-ASC to define their
efficacy in reducing the release of pathogenic soluble factors,
mainly involved in OA progression.
Firstly, we found that the factors analyzed were affected in the
same way by the 25:75 and 75:25 ASC-CM ratios, but the 50:50
ratio that was used to perform the experiment showed a peculiar
pattern of modulation. We showed that ASC-CM was not effective
at reducing IL6, CXCL1/GROa, CXCL8/IL8, CCL2/MCP-1, CCL3/MIP-1a
or CCL5/RANTES produced by OA synoviocytes or chondrocytes
except for CXCL8/IL8 and CXCL1/GROa in chondrocytes both in
monolayers or micromasses. In line with Tsuchida A36 et al. we
found that chondrocytes in micromasses release a lower of amount
of inflammatory factors than in monolayers, although we
confirmed that these molecules were down-modulated by ASC-CM.
This finding indicates that the anti-inflammatory effects of ASC,
which we previously demonstrated in co-culture experiments31,
were strictly dependent on the cross-talk between cells and was
not recapitulated by the soluble factors secreted by unstimulated
ASC. In fact, other reports have found that CM from TNFa/IFNg-
stimulated MSC was able to inhibit inflammatory processes37, thus
suggesting that unstimulated ASC could not reduce basal inflam-
mation of chondrocytes or synoviocytes since they are not primed
to release immunomodulatory factors. Even though CM from
stimulated ASC is rich in immunosuppressive factors37, activation
with TNFa/IFNg is mainly used in vitro to compare unstimulated
and activated ASC-CM, but does not ensure that activated ASC
in vitro produce the same factors when co-cultured with inflamed
chondrocytes and synoviocytes, as occurs in vivo. This aspect is
fundamental for planning what to use for clinical trials, since the
in vivo local activation of ASC, exerted by OA chondrocytes or



Fig. 4. ASC-CM effects on ADAMTS4, ADAMTS5, TIMP1, TIMP3 and MMP13 gene expression and protein release of synoviocytes (n ¼ 8). A. Gene expression of ADAMTS4, ADAMTS5,
TIMP1, TIMP3 and MMP13 was tested on synoviocytes in basal conditions and after treatment with ASC-CM (left side) or co-cultured with ASC (right side). Data are expressed as
median with interquartile range of fold basal release. B. Protein release of ADAMTS4, ADAMTS5, and MMP13 (pg/ml) was tested on synoviocytes in basal conditions and after
treatment with ASC-CM (left side) or co-cultured with ASC (right side). Significant differences: ADAMTS4 P ¼ 0.042, ADAMTS5 P ¼ 0.045. C. Protein release of TIMP1 (ng/ml) and
TIMP3 (pg/ml) was tested on synoviocytes in basal conditions and after treatment with ASC-CM (left side) or co-cultured with ASC (right side). Data are expressed as median with
interquartile range. Significant differences: TIMP1 (left side) *P ¼ 0.0225, TIMP1 (right side). *P ¼ 0.0177.
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synoviocytes, cannot be recapitulated using ASC-CM, which is only
a mixture of soluble factors.

Subsequently, we evaluated, both on chondrocytes and syno-
viocytes, the main proteases (ADAMTS4, ADAMTS5, MMP13), as
well as their inhibitors (TIMP1 and TIMP3), involved in matrix
degradation. In chondrocytes treated with ASC-CM the expression
of ADAMTS5 was decreased and MMP13 was increased whereas in
co-culture ADAMTS5 was not affected and MMP13 was decreased.
However, the release of these two factors was significantly down-
modulated only by ASC in co-culture, thus confirming their inhib-
itory role also on these factors. Our findings are coherent with those
of a recent paper38 that evaluated the effects of ASC-CM on basal
and IL1b-activated OA chondrocytes and found an increase of
MMP13 in basal but not in activated chondrocytes. Moreover, we
found that in chondrocytes ADAMTS4 and TIMP3 release was not
modulated but TIMP1 was down-modulated by ASC-CM, whereas
ASC in co-culture significantly decreased the release of ADAMTS4
and increased TIMP1. These data showed that only ASC in co-
culture were able to reduce the production of these degradative
matrix proteases. In particular, ADAMTS4, ADAMTS5, MMP13 in the
cartilage are modulated by inflammatory factors and constitute the
main enzymes involved in cleavage of not only aggrecan and
collagen type 2 but also sulfate proteoglycans (brevican and ver-
sican), cartilage oligomeric matrix protein (COMP), fibromodulin
and decorin, thus indicating the wide spectrum of action of these
enzymes39,40. Even if ASC in co-culture with chondrocytes
decreased the release of the degradative matrix enzymes and
increase TIMP1 inhibitor, this effect was not sufficient to increase
collagen type 2 and aggrecan expression, as we previously re-
ported32. Conversely, in synoviocytes, ADAMTS4 mRNA expression
was up-regulated by ASC-CM but not by ASC in co-culture. How-
ever, the release of the proteins was significantly down-modulated
only by ASC in co-culture. Different inflammatory factors, such as
IL1b, TNFa, IL6 and TGFb are able to induce ADAMTS441,42 at mRNA
level. Our previous data32 showed that ASCs alone do not release
these inflammatory factors involved in ADAMTS4 up-regulation.
Therefore, we hypothesize that inflammatory factors produced by
synoviocytes (i.e., IL6) treated with ASC-CM, were directly
responsible for ADAMTS4 induction, and TIMP1 induced by ASC-
CM seems insufficient to counteract this induction. Conversely,
ADAMTS5 expression in synoviocytes decreased regardless of cul-
ture conditions (synoviocytes treated with ASC-CM or in co-
culture), thus confirming that both ADAMTS4 and ADAMTS5 in
this condition are inducible43. Conversely, it has been shown that
different inflammatory factors (TNFa, IL1b, IL6)40 increase
ADAMTS4 on synoviocytes associated with a decrease of
ADAMTS542, which suggests that ADAMTS4 is inducible by these
factors, whereas ADAMTS5 is not modulated44. Overall these data
confirm the lower effect of ASC-CM on both chondrocytes and
synoviocytes proteinases and inhibitors again showing the efficacy
of ASC in reducing a wide spectrum of inflammatory and degra-
dative factors responsible for OA progression.

We demonstrated that PGE2 was directly involved in anti-
inflammatory effects exert by ASC in co-culture with inflamed



Fig. 5. PGE2 released by ASC-CM alone or after chondrocytes (n ¼ 8) or synoviocytes
(n ¼ 8) treatment. A. PGE2 (pg/ml) was tested on different ratios of ASC-CM
(DMEM:CM 75:25, 50:50, 25:75) B. PGE2 (pg/ml) was tested on chondrocytes or
synoviocytes alone or treated with different ratios of ASC-CM. Data are expressed as
median with interquartile range. Significant differences *P ¼ 0.0036.

Fig. 6. ASC co-culture effects on inflamed chondrocytes and synoviocytes. A schematic
model that summarizes all the ASC effects demonstrated by co-culturing ASC with
inflamed chondrocytes or synoviocytes. ASC down-modulated cytokine/chemokines
(IL6, IL8/CXCL8, CCL2/MCP-1, CCL3/MIP-1a, CCL5/RANTES and CXCL1/GROa), a dis-
integrin and metalloproteinase with thrombospondin motifs (ADAMTS4, ADAMTS5),
but increased tissue metalloproteinase (TIMP1) both on chondrocytes and synovio-
cytes. In chondrocytes ASC down-modulated also metalloproteinase (MMP13). The
down-modulation of cytokine/chemokines was mediated by PGE2.
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chondrocytes and synoviocytes through its receptor EP4.
Conversely using ASC-CM we only observed a partial anti-
inflammatory effect, which can be due in part to the lower
amount of PGE2 detected in ASC-CM compared to ASC, but also to
the lower efficiency of unstimulated ASC-CM to recapitulate all the
effects mediated by a co-culture with ASC. Moreover, it is known
that secretome of mesenchymal stromal cells is enriched not only
in secreted factors but also in plasma membrane-derived particles
(MPs) which act as a shuttle for selected MSC-derived bioactive
molecules, mRNAs andmicroRNAs45e48 that could contribute to the
effects observed and their released could be dependent by in-
flammatory cells activation.

These data contribute to explaining, as summarized in Fig. 6 that
ASCs primed by inflammatory chondrocytes or synoviocytes-
secreted factors become more potent to exert their therapeutic
effects counteracting the expression of crucial factors that favor OA
evolution. These data help to clarify the importance of using ASC for
the clinical treatment of OA disease.
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